Ari commited on
Commit
8ccf10b
·
verified ·
1 Parent(s): deb55dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -47
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  import os
3
- import re
4
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
  from fpdf import FPDF
6
  from gtts import gTTS
@@ -9,40 +9,23 @@ from docx import Document
9
  from reportlab.lib.pagesizes import letter
10
  from reportlab.pdfgen import canvas
11
 
12
- # Use LegalBERT for handling legal documents
13
- tokenizer = AutoTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
14
- model = AutoModelForSeq2SeqLM.from_pretrained("nlpaueb/legal-bert-base-uncased")
15
 
16
- # Function to chunk the text into manageable pieces
17
- def chunk_text(text, max_token_len=512):
18
- sentences = re.split(r'(?<=[.!?]) +', text)
19
- chunks = []
20
- current_chunk = []
21
- current_length = 0
22
-
23
- for sentence in sentences:
24
- tokens = tokenizer.tokenize(sentence)
25
- if current_length + len(tokens) <= max_token_len:
26
- current_chunk.append(sentence)
27
- current_length += len(tokens)
28
- else:
29
- chunks.append(" ".join(current_chunk))
30
- current_chunk = [sentence]
31
- current_length = len(tokens)
32
-
33
- if current_chunk:
34
- chunks.append(" ".join(current_chunk))
35
-
36
- return chunks
37
 
 
38
  def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
39
  doc = Document(docx_file)
40
- full_text = [para.text for para in doc.paragraphs]
 
 
41
 
42
  pdf = canvas.Canvas(output_pdf, pagesize=letter)
43
  pdf.setFont("Helvetica", 12)
44
- text = pdf.beginText(40, 750)
45
 
 
46
  for line in full_text:
47
  text.textLine(line)
48
 
@@ -50,14 +33,8 @@ def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
50
  pdf.save()
51
  return output_pdf
52
 
53
- # Summarize each chunk and then recursively summarize the summaries
54
- def summarize_chunk(chunk, min_length=50, max_length=150):
55
- inputs = tokenizer([chunk], max_length=512, truncation=True, return_tensors="pt")
56
- summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=max_length)
57
- return tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
58
-
59
- # Main processing function using recursive summarization
60
- def pdf_to_text(text, PDF, min_length=50):
61
  try:
62
  file_extension = os.path.splitext(PDF.name)[1].lower()
63
 
@@ -67,32 +44,30 @@ def pdf_to_text(text, PDF, min_length=50):
67
  elif file_extension == '.pdf' and text == "":
68
  text = extract_text(PDF.name)
69
 
70
- chunks = chunk_text(text)
71
- summarized_chunks = [summarize_chunk(chunk, min_length=min_length) for chunk in chunks]
72
 
73
- # Combine summaries and recursively summarize the combined text
74
- summarized_text = " ".join(summarized_chunks)
75
- final_summary = summarize_chunk(summarized_text, min_length=min_length, max_length=min_length+150)
76
 
77
- # Save summarized text to PDF
78
  pdf = FPDF()
79
  pdf.add_page()
80
  pdf.set_font("Times", size=12)
81
- pdf.multi_cell(190, 10, txt=final_summary, align='C')
82
  pdf_output_path = "legal.pdf"
83
  pdf.output(pdf_output_path)
84
 
85
- # Convert summarized text to audio
86
  audio_output_path = "legal.wav"
87
- tts = gTTS(text=final_summary, lang='en', slow=False)
88
  tts.save(audio_output_path)
89
 
90
- return audio_output_path, final_summary, pdf_output_path
91
 
92
  except Exception as e:
93
  return None, f"An error occurred: {str(e)}", None
94
 
95
- def process_sample_document(min_length=50):
 
96
  sample_document_path = "Marbury v. Madison.pdf"
97
 
98
  with open(sample_document_path, "rb") as f:
@@ -105,7 +80,7 @@ with gr.Blocks() as iface:
105
 
106
  text_input = gr.Textbox(label="Input Text")
107
  file_input = gr.File(label="Upload PDF or DOCX")
108
- slider = gr.Slider(minimum=10, maximum=300, step=10, value=50, label="Summary Minimum Length")
109
 
110
  audio_output = gr.Audio(label="Generated Audio")
111
  summary_output = gr.Textbox(label="Generated Summary")
 
1
  import gradio as gr
2
  import os
3
+ import nltk
4
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
  from fpdf import FPDF
6
  from gtts import gTTS
 
9
  from reportlab.lib.pagesizes import letter
10
  from reportlab.pdfgen import canvas
11
 
12
+ nltk.download('punkt')
 
 
13
 
14
+ # Load the models and tokenizers
15
+ tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
16
+ model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ # Convert DOCX to PDF using reportlab
19
  def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"):
20
  doc = Document(docx_file)
21
+ full_text = []
22
+ for para in doc.paragraphs:
23
+ full_text.append(para.text)
24
 
25
  pdf = canvas.Canvas(output_pdf, pagesize=letter)
26
  pdf.setFont("Helvetica", 12)
 
27
 
28
+ text = pdf.beginText(40, 750)
29
  for line in full_text:
30
  text.textLine(line)
31
 
 
33
  pdf.save()
34
  return output_pdf
35
 
36
+ # Process input file (PDF or DOCX)
37
+ def pdf_to_text(text, PDF, min_length=20):
 
 
 
 
 
 
38
  try:
39
  file_extension = os.path.splitext(PDF.name)[1].lower()
40
 
 
44
  elif file_extension == '.pdf' and text == "":
45
  text = extract_text(PDF.name)
46
 
47
+ inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt")
48
+ min_length = int(min_length)
49
 
50
+ summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length+1000)
51
+ output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
 
52
 
 
53
  pdf = FPDF()
54
  pdf.add_page()
55
  pdf.set_font("Times", size=12)
56
+ pdf.multi_cell(190, 10, txt=output_text, align='C')
57
  pdf_output_path = "legal.pdf"
58
  pdf.output(pdf_output_path)
59
 
 
60
  audio_output_path = "legal.wav"
61
+ tts = gTTS(text=output_text, lang='en', slow=False)
62
  tts.save(audio_output_path)
63
 
64
+ return audio_output_path, output_text, pdf_output_path
65
 
66
  except Exception as e:
67
  return None, f"An error occurred: {str(e)}", None
68
 
69
+ # Preloaded document handler
70
+ def process_sample_document(min_length=20):
71
  sample_document_path = "Marbury v. Madison.pdf"
72
 
73
  with open(sample_document_path, "rb") as f:
 
80
 
81
  text_input = gr.Textbox(label="Input Text")
82
  file_input = gr.File(label="Upload PDF or DOCX")
83
+ slider = gr.Slider(minimum=10, maximum=100, step=10, value=20, label="Summary Minimum Length")
84
 
85
  audio_output = gr.Audio(label="Generated Audio")
86
  summary_output = gr.Textbox(label="Generated Summary")