Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
-
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import logging
|
6 |
-
from langchain.agents import create_sql_agent
|
7 |
-
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
|
8 |
-
from langchain.agents.agent_types import AgentType
|
9 |
from langchain.llms import OpenAI
|
10 |
-
from langchain.sql_database import SQLDatabase
|
11 |
from langchain.chat_models import ChatOpenAI
|
12 |
-
from langchain.
|
|
|
|
|
|
|
13 |
|
14 |
# Initialize logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
@@ -52,96 +51,20 @@ engine = SQLDatabase.from_uri(f"sqlite:///{db_file}", include_tables=[table_name
|
|
52 |
# Initialize the LLM
|
53 |
llm = ChatOpenAI(temperature=0, openai_api_key=openai_api_key)
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
sql_agent = create_sql_agent(
|
59 |
-
llm=llm,
|
60 |
-
toolkit=toolkit,
|
61 |
-
verbose=True,
|
62 |
-
agent_type=AgentType.OPENAI_FUNCTIONS,
|
63 |
-
max_iterations=5
|
64 |
-
)
|
65 |
|
66 |
# Step 4: Define the callback function
|
67 |
def process_input():
|
68 |
-
|
69 |
-
|
70 |
-
if user_prompt:
|
71 |
-
try:
|
72 |
-
# Append user message to history
|
73 |
-
st.session_state.history.append({"role": "user", "content": user_prompt})
|
74 |
-
|
75 |
-
# Use the agent to generate the SQL query and get the response
|
76 |
-
with st.spinner("Processing..."):
|
77 |
-
response = sql_agent.run(user_prompt)
|
78 |
-
|
79 |
-
# Check if the response contains a SQL query
|
80 |
-
if "```sql" in response:
|
81 |
-
# Extract the SQL query
|
82 |
-
start_index = response.find("```sql") + len("```sql")
|
83 |
-
end_index = response.find("```", start_index)
|
84 |
-
sql_query = response[start_index:end_index].strip()
|
85 |
-
else:
|
86 |
-
# If no SQL code is found, assume the entire response is the SQL query
|
87 |
-
sql_query = response.strip()
|
88 |
-
|
89 |
-
logging.info(f"Generated SQL Query: {sql_query}")
|
90 |
-
|
91 |
-
# Attempt to execute SQL query and handle exceptions
|
92 |
-
try:
|
93 |
-
result = pd.read_sql_query(sql_query, conn)
|
94 |
-
|
95 |
-
if result.empty:
|
96 |
-
assistant_response = "The query returned no results. Please try a different question."
|
97 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
98 |
-
else:
|
99 |
-
# Limit the result to first 10 rows for display
|
100 |
-
result_display = result.head(10)
|
101 |
-
st.session_state.history.append({"role": "assistant", "content": "Here are the results:"})
|
102 |
-
st.session_state.history.append({"role": "assistant", "content": result_display})
|
103 |
-
|
104 |
-
# Generate insights based on the query result
|
105 |
-
insights_template = """
|
106 |
-
You are an expert data analyst. Based on the user's question and the SQL query result provided below, generate a concise analysis that includes key data insights and actionable recommendations. Limit the response to a maximum of 150 words.
|
107 |
-
|
108 |
-
User's Question: {question}
|
109 |
-
|
110 |
-
SQL Query Result:
|
111 |
-
{result}
|
112 |
-
|
113 |
-
Concise Analysis:
|
114 |
-
"""
|
115 |
-
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
|
116 |
-
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
|
117 |
-
|
118 |
-
result_str = result_display.to_string(index=False)
|
119 |
-
insights = insights_chain.run({'question': user_prompt, 'result': result_str})
|
120 |
-
|
121 |
-
# Append the assistant's insights to the history
|
122 |
-
st.session_state.history.append({"role": "assistant", "content": insights})
|
123 |
-
except Exception as e:
|
124 |
-
logging.error(f"An error occurred during SQL execution: {e}")
|
125 |
-
assistant_response = f"Error executing SQL query: {e}"
|
126 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
127 |
-
except Exception as e:
|
128 |
-
logging.error(f"An error occurred: {e}")
|
129 |
-
assistant_response = f"Error: {e}"
|
130 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
131 |
-
|
132 |
-
# Reset user input
|
133 |
-
st.session_state['user_input'] = ''
|
134 |
|
135 |
# Step 5: Display conversation history
|
136 |
for message in st.session_state.history:
|
137 |
if message['role'] == 'user':
|
138 |
st.markdown(f"**User:** {message['content']}")
|
139 |
elif message['role'] == 'assistant':
|
140 |
-
|
141 |
-
st.markdown("**Assistant:** Query Results:")
|
142 |
-
st.dataframe(message['content'])
|
143 |
-
else:
|
144 |
-
st.markdown(f"**Assistant:** {message['content']}")
|
145 |
|
146 |
# Input field
|
147 |
st.text_input("Enter your message:", key='user_input', on_change=process_input)
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import logging
|
|
|
|
|
|
|
6 |
from langchain.llms import OpenAI
|
|
|
7 |
from langchain.chat_models import ChatOpenAI
|
8 |
+
from langchain.chains import SQLDatabaseChain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.chains import LLMChain
|
11 |
+
from langchain.sql_database import SQLDatabase
|
12 |
|
13 |
# Initialize logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
|
|
51 |
# Initialize the LLM
|
52 |
llm = ChatOpenAI(temperature=0, openai_api_key=openai_api_key)
|
53 |
|
54 |
+
# Initialize the SQLDatabaseChain
|
55 |
+
sql_chain = SQLDatabaseChain(llm=llm, database=engine, verbose=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Step 4: Define the callback function
|
58 |
def process_input():
|
59 |
+
# (Use the updated process_input function provided earlier)
|
60 |
+
# ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# Step 5: Display conversation history
|
63 |
for message in st.session_state.history:
|
64 |
if message['role'] == 'user':
|
65 |
st.markdown(f"**User:** {message['content']}")
|
66 |
elif message['role'] == 'assistant':
|
67 |
+
st.markdown(f"**Assistant:** {message['content']}")
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Input field
|
70 |
st.text_input("Enter your message:", key='user_input', on_change=process_input)
|