Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,31 +3,47 @@ import streamlit as st
|
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import openai
|
6 |
-
from langchain_openai import AzureChatOpenAI
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
|
|
|
|
10 |
from langchain.chains import RetrievalQA
|
11 |
-
from langchain.document_loaders import CSVLoader
|
12 |
-
from langchain.prompts import ChatPromptTemplate, FewShotPromptTemplate
|
13 |
-
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
14 |
import sqlparse
|
15 |
import logging
|
|
|
16 |
|
17 |
-
# Load environment variables
|
18 |
-
|
|
|
|
|
19 |
api_key = os.getenv("OPENAI_API_KEY")
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
32 |
if csv_file is None:
|
33 |
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
|
@@ -37,7 +53,8 @@ else:
|
|
37 |
st.write(f"Data Preview ({csv_file.name}):")
|
38 |
st.dataframe(data.head())
|
39 |
|
40 |
-
#
|
|
|
41 |
db_file = 'my_database.db'
|
42 |
conn = sqlite3.connect(db_file)
|
43 |
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
@@ -45,59 +62,79 @@ data.to_sql(table_name, conn, index=False, if_exists='replace')
|
|
45 |
|
46 |
# SQL table metadata (for validation and schema)
|
47 |
valid_columns = list(data.columns)
|
|
|
|
|
48 |
st.write(f"Valid columns: {valid_columns}")
|
49 |
|
50 |
-
# Set up the SQL Database for LangChain
|
51 |
-
llm = AzureChatOpenAI(
|
52 |
-
temperature=0,
|
53 |
-
model=chat_model,
|
54 |
-
deployment_name=chat_deployment,
|
55 |
-
api_key=api_key,
|
56 |
-
azure_endpoint=endpoint,
|
57 |
-
api_version=api_version
|
58 |
-
)
|
59 |
db = SQLDatabase.from_uri(f'sqlite:///{db_file}')
|
60 |
-
db.raw_connection = conn
|
61 |
|
62 |
-
# Create the SQL agent with
|
63 |
sql_agent = create_sql_agent(
|
64 |
-
llm
|
65 |
db=db,
|
66 |
verbose=True,
|
67 |
max_iterations=20, # Increased iteration limit
|
68 |
max_execution_time=90 # Set timeout limit to 90 seconds
|
69 |
)
|
70 |
|
71 |
-
#
|
72 |
-
embeddings =
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
74 |
documents = loader.load()
|
|
|
75 |
vector_store = FAISS.from_documents(documents, embeddings)
|
76 |
retriever = vector_store.as_retriever()
|
77 |
rag_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
78 |
|
79 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
81 |
if user_prompt:
|
82 |
try:
|
83 |
-
# Add column
|
84 |
column_hints = f" Use only these columns: {', '.join(valid_columns)}"
|
85 |
prompt_with_columns = user_prompt + column_hints
|
86 |
|
87 |
-
# Retrieve context using
|
88 |
context = rag_chain.run(prompt_with_columns)
|
89 |
st.write(f"Retrieved Context: {context}")
|
90 |
|
91 |
-
# Generate SQL query using SQL agent
|
92 |
generated_sql = sql_agent.run(f"{prompt_with_columns} {context}")
|
|
|
|
|
93 |
st.write(f"Generated SQL Query: {generated_sql}")
|
94 |
|
95 |
-
# Validate SQL query
|
96 |
if not validate_sql_with_sqlparse(generated_sql):
|
97 |
st.write("Generated SQL is not valid.")
|
98 |
elif not validate_sql(generated_sql, valid_columns):
|
99 |
st.write("Generated SQL references invalid columns.")
|
100 |
else:
|
|
|
101 |
result = pd.read_sql(generated_sql, conn)
|
102 |
st.write("Query Results:")
|
103 |
st.dataframe(result)
|
|
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import openai
|
6 |
+
from langchain_openai import AzureChatOpenAI
|
7 |
+
from langchain_community.agent_toolkits.sql.base import create_sql_agent
|
8 |
+
from langchain_community.utilities import SQLDatabase
|
9 |
+
from langchain_community.document_loaders import CSVLoader
|
10 |
+
from langchain_community.vectorstores import FAISS
|
11 |
+
from langchain_openai.embeddings import AzureOpenAIEmbeddings
|
12 |
from langchain.chains import RetrievalQA
|
|
|
|
|
|
|
13 |
import sqlparse
|
14 |
import logging
|
15 |
+
from dotenv import load_dotenv
|
16 |
|
17 |
+
# Load environment variables from .env file
|
18 |
+
load_dotenv()
|
19 |
+
|
20 |
+
# Set up API credentials and environment variables
|
21 |
api_key = os.getenv("OPENAI_API_KEY")
|
22 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
|
23 |
+
api_version = os.getenv("OPENAI_API_VERSION", "2023-05-15") # Set a default if not provided
|
24 |
+
chat_model = os.getenv("CHAT_MODEL")
|
25 |
+
chat_deployment = os.getenv("CHAT_DEPLOYMENT")
|
26 |
+
embed_model = os.getenv("EMBED_MODEL")
|
27 |
+
embed_deployment = os.getenv("EMBED_DEPLOYMENT")
|
28 |
+
|
29 |
+
# Default to a specific endpoint if the environment variable is missing
|
30 |
+
if not azure_endpoint:
|
31 |
+
azure_endpoint = "https://<your-azure-endpoint>.openai.azure.com" # Replace with your actual endpoint
|
32 |
+
|
33 |
+
# OpenAI API key (ensure it is securely stored)
|
34 |
+
openai.api_key = api_key
|
35 |
|
36 |
+
# Initialize Azure OpenAI LLM (Language Model)
|
37 |
+
llm = AzureChatOpenAI(
|
38 |
+
temperature=0,
|
39 |
+
model=chat_model,
|
40 |
+
deployment_name=chat_deployment,
|
41 |
+
api_key=api_key,
|
42 |
+
azure_endpoint=azure_endpoint,
|
43 |
+
api_version=api_version
|
44 |
+
)
|
45 |
|
46 |
+
# Step 1: Upload CSV data file (or use default)
|
47 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
48 |
if csv_file is None:
|
49 |
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
|
|
|
53 |
st.write(f"Data Preview ({csv_file.name}):")
|
54 |
st.dataframe(data.head())
|
55 |
|
56 |
+
# Step 2: Load CSV data into a persistent SQLite database
|
57 |
+
# Use a persistent database file instead of in-memory to retain schema context
|
58 |
db_file = 'my_database.db'
|
59 |
conn = sqlite3.connect(db_file)
|
60 |
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
|
|
62 |
|
63 |
# SQL table metadata (for validation and schema)
|
64 |
valid_columns = list(data.columns)
|
65 |
+
|
66 |
+
# Debug: Display valid columns for user to verify
|
67 |
st.write(f"Valid columns: {valid_columns}")
|
68 |
|
69 |
+
# Step 3: Set up the SQL Database for LangChain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
db = SQLDatabase.from_uri(f'sqlite:///{db_file}')
|
71 |
+
db.raw_connection = conn # Use the persistent database connection for LangChain
|
72 |
|
73 |
+
# Step 4: Create the SQL agent with increased iteration and time limits
|
74 |
sql_agent = create_sql_agent(
|
75 |
+
llm,
|
76 |
db=db,
|
77 |
verbose=True,
|
78 |
max_iterations=20, # Increased iteration limit
|
79 |
max_execution_time=90 # Set timeout limit to 90 seconds
|
80 |
)
|
81 |
|
82 |
+
# Step 5: Use FAISS with RAG for context retrieval
|
83 |
+
embeddings = AzureOpenAIEmbeddings(
|
84 |
+
model=embed_model,
|
85 |
+
deployment_name=embed_deployment,
|
86 |
+
azure_endpoint=azure_endpoint,
|
87 |
+
api_key=api_key,
|
88 |
+
api_version=api_version
|
89 |
+
)
|
90 |
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
91 |
documents = loader.load()
|
92 |
+
|
93 |
vector_store = FAISS.from_documents(documents, embeddings)
|
94 |
retriever = vector_store.as_retriever()
|
95 |
rag_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
96 |
|
97 |
+
# Step 6: Define SQL validation helpers
|
98 |
+
def validate_sql(query, valid_columns):
|
99 |
+
"""Validates the SQL query by ensuring it references only valid columns."""
|
100 |
+
parsed = sqlparse.parse(query)
|
101 |
+
for token in parsed[0].tokens:
|
102 |
+
if token.ttype is None: # If it's a column name
|
103 |
+
column_name = str(token).strip()
|
104 |
+
if column_name not in valid_columns:
|
105 |
+
return False
|
106 |
+
return True
|
107 |
+
|
108 |
+
def validate_sql_with_sqlparse(query):
|
109 |
+
"""Validates SQL syntax using sqlparse."""
|
110 |
+
parsed_query = sqlparse.parse(query)
|
111 |
+
return len(parsed_query) > 0
|
112 |
+
|
113 |
+
# Step 7: Generate SQL query based on user input and run it with LangChain SQL Agent
|
114 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
115 |
if user_prompt:
|
116 |
try:
|
117 |
+
# Step 8: Add valid column names to the prompt
|
118 |
column_hints = f" Use only these columns: {', '.join(valid_columns)}"
|
119 |
prompt_with_columns = user_prompt + column_hints
|
120 |
|
121 |
+
# Step 9: Retrieve context using RAG
|
122 |
context = rag_chain.run(prompt_with_columns)
|
123 |
st.write(f"Retrieved Context: {context}")
|
124 |
|
125 |
+
# Step 10: Generate SQL query using SQL agent
|
126 |
generated_sql = sql_agent.run(f"{prompt_with_columns} {context}")
|
127 |
+
|
128 |
+
# Debug: Display generated SQL query for inspection
|
129 |
st.write(f"Generated SQL Query: {generated_sql}")
|
130 |
|
131 |
+
# Step 11: Validate SQL query
|
132 |
if not validate_sql_with_sqlparse(generated_sql):
|
133 |
st.write("Generated SQL is not valid.")
|
134 |
elif not validate_sql(generated_sql, valid_columns):
|
135 |
st.write("Generated SQL references invalid columns.")
|
136 |
else:
|
137 |
+
# Step 12: Execute SQL query
|
138 |
result = pd.read_sql(generated_sql, conn)
|
139 |
st.write("Query Results:")
|
140 |
st.dataframe(result)
|