|
import streamlit as st |
|
import torch |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
from diffusers.utils import export_to_video |
|
|
|
|
|
device = torch.device("cpu") |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
"damo-vilab/text-to-video-ms-1.7b", |
|
torch_dtype=torch.float32 |
|
).to(device) |
|
|
|
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
prompt = "Pop international experimental music" |
|
|
|
|
|
video_frames = pipe(prompt, num_inference_steps=25).frames |
|
|
|
|
|
video_path = export_to_video(video_frames) |
|
|