Spaces:
Sleeping
Sleeping
arifdroid
commited on
Commit
•
7cdaa96
1
Parent(s):
301a974
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain import PromptTemplate
|
3 |
+
from langchain.llms import HuggingFaceHub
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
6 |
+
from qdrant_client import QdrantClient
|
7 |
+
from langchain.vectorstores import Qdrant
|
8 |
+
from huggingface_hub import login
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain.vectorstores import Chroma
|
12 |
+
import os
|
13 |
+
|
14 |
+
# Set up Streamlit UI
|
15 |
+
st.title("HuggingFace QA with Langchain and Qdrant")
|
16 |
+
st.write("This app leverages a Language Model to provide answers to your questions using retrieved context.")
|
17 |
+
|
18 |
+
# Load HuggingFace token from environment variable for HuggingFace Space
|
19 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
20 |
+
|
21 |
+
# Log in to HuggingFace Hub
|
22 |
+
if huggingface_token:
|
23 |
+
login(token=huggingface_token)
|
24 |
+
else:
|
25 |
+
st.error("HuggingFace token not found. Please set the HUGGINGFACE_TOKEN environment variable.")
|
26 |
+
|
27 |
+
# HuggingFace Inference API Configuration
|
28 |
+
config = {
|
29 |
+
'max_new_tokens': 1024,
|
30 |
+
'temperature': 0.1,
|
31 |
+
'top_k': 50,
|
32 |
+
'top_p': 0.9
|
33 |
+
}
|
34 |
+
|
35 |
+
# Use HuggingFaceHub for LLM
|
36 |
+
llm = HuggingFaceHub(repo_id="stanford-crfm/BioMedLM", model_kwargs=config, huggingfacehub_api_token=huggingface_token)
|
37 |
+
|
38 |
+
st.write("LLM Initialized....")
|
39 |
+
|
40 |
+
prompt_template = """Use the following pieces of information to answer the user's question.
|
41 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
42 |
+
|
43 |
+
Context: {context}
|
44 |
+
Question: {question}
|
45 |
+
|
46 |
+
Only return the helpful answer below and nothing else.
|
47 |
+
Helpful answer:
|
48 |
+
"""
|
49 |
+
|
50 |
+
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
|
51 |
+
|
52 |
+
# PDF Loader and Document Processing
|
53 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
54 |
+
if uploaded_file is not None:
|
55 |
+
loader = PyPDFLoader(uploaded_file)
|
56 |
+
documents = loader.load()
|
57 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
58 |
+
docs = text_splitter.split_documents(documents)
|
59 |
+
|
60 |
+
# Create Chroma Vector Store from PDF
|
61 |
+
db = Chroma.from_documents(docs, embeddings)
|
62 |
+
retriever = db.as_retriever(search_kwargs={"k": 1})
|
63 |
+
else:
|
64 |
+
# Use Qdrant if no PDF is uploaded
|
65 |
+
url = "http://localhost:6333"
|
66 |
+
client = QdrantClient(
|
67 |
+
url=url, prefer_grpc=False
|
68 |
+
)
|
69 |
+
db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db")
|
70 |
+
retriever = db.as_retriever(search_kwargs={"k": 1})
|
71 |
+
|
72 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
|
73 |
+
|
74 |
+
# Streamlit Form to get user input
|
75 |
+
with st.form(key='query_form'):
|
76 |
+
query = st.text_input("Enter your question here:")
|
77 |
+
submit_button = st.form_submit_button(label='Get Answer')
|
78 |
+
|
79 |
+
# Handle form submission
|
80 |
+
if submit_button and query:
|
81 |
+
chain_type_kwargs = {"prompt": prompt}
|
82 |
+
qa = RetrievalQA.from_chain_type(
|
83 |
+
llm=llm,
|
84 |
+
chain_type="stuff",
|
85 |
+
retriever=retriever,
|
86 |
+
return_source_documents=True,
|
87 |
+
chain_type_kwargs=chain_type_kwargs,
|
88 |
+
verbose=True
|
89 |
+
)
|
90 |
+
response = qa(query)
|
91 |
+
answer = response['result']
|
92 |
+
source_document = response['source_documents'][0].page_content
|
93 |
+
doc = response['source_documents'][0].metadata.get('source', 'Uploaded PDF')
|
94 |
+
|
95 |
+
# Display the results
|
96 |
+
st.write("## Answer:")
|
97 |
+
st.write(answer)
|
98 |
+
st.write("## Source Document:")
|
99 |
+
st.write(source_document)
|
100 |
+
st.write("## Document Source:")
|
101 |
+
st.write(doc)
|