Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,6 @@ import gradio as gr # Import Gradio for the interface
|
|
4 |
# Load a text-generation model
|
5 |
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
6 |
|
7 |
-
# Load the classification model
|
8 |
-
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
9 |
-
|
10 |
-
|
11 |
# Customize the bot's knowledge base with predefined responses
|
12 |
faq_responses = {
|
13 |
"study tips": "Here are some study tips: 1) Break your study sessions into 25-minute chunks (Pomodoro Technique). 2) Test yourself frequently. 3) Stay organized using planners or apps like Notion or Todoist.",
|
@@ -19,26 +15,23 @@ faq_responses = {
|
|
19 |
|
20 |
# Define the chatbot's response function
|
21 |
def faq_chatbot(user_input):
|
22 |
-
# Classify the user input by passing the FAQ keywords as labels
|
23 |
-
classified_user_input = classifier(user_input, candidate_labels=list(faq_responses.keys()))
|
24 |
-
|
25 |
-
|
26 |
-
# Get the highest confidence score label, ie. the most likely of the FAQ
|
27 |
-
predicted_label = classified_user_input["labels"][0]
|
28 |
-
confidence_score = classified_user_input["scores"][0]
|
29 |
-
|
30 |
-
# Confidence threshold (adjust if needed)
|
31 |
-
threshold = 0.5
|
32 |
-
|
33 |
-
# If the classification confidence is high, return the corresponding FAQ response
|
34 |
-
if confidence_score > threshold:
|
35 |
-
return faq_responses[predicted_label]
|
36 |
-
|
37 |
-
|
38 |
# Check if the user's input matches any FAQ keywords
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
conversation = chatbot(user_input, max_length=50, num_return_sequences=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
# Load a text-generation model
|
5 |
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
6 |
|
|
|
|
|
|
|
|
|
7 |
# Customize the bot's knowledge base with predefined responses
|
8 |
faq_responses = {
|
9 |
"study tips": "Here are some study tips: 1) Break your study sessions into 25-minute chunks (Pomodoro Technique). 2) Test yourself frequently. 3) Stay organized using planners or apps like Notion or Todoist.",
|
|
|
15 |
|
16 |
# Define the chatbot's response function
|
17 |
def faq_chatbot(user_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Check if the user's input matches any FAQ keywords
|
19 |
+
for key, response in faq_responses.items():
|
20 |
+
if key in user_input.lower():
|
21 |
+
return response
|
22 |
+
|
23 |
+
# If no FAQ match, use the AI model to generate a response
|
24 |
+
conversation = chatbot(user_input, max_length=50, num_return_sequences=1)
|
25 |
+
return conversation[0]['generated_text']
|
26 |
+
|
27 |
+
# Create the Gradio interface
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=faq_chatbot, # The function to handle user input
|
30 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask me about studying tips or resources..."), # Input text box
|
31 |
+
outputs="text", # Output as text
|
32 |
+
title="Student FAQ Chatbot",
|
33 |
+
description="Ask me for study tips, time management advice, or about resources to help with your studies!"
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the chatbot and make it public
|
37 |
+
interface.launch(share=True)
|