Spaces:
Runtime error
Runtime error
init
Browse files- Dockerfile +34 -0
- app.py +63 -0
- requirements.txt +1 -0
Dockerfile
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN apt-get update && apt-get install -y libgl1-mesa-glx
|
8 |
+
RUN pip install --no-cache-dir torch
|
9 |
+
RUN pip install --no-cache-dir torchvision
|
10 |
+
RUN pip install --no-cache-dir git+https://github.com/luca-medeiros/lang-segment-anything.git
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
12 |
+
|
13 |
+
# Set up a new user named "user" with user ID 1000
|
14 |
+
RUN useradd -m -u 1000 user
|
15 |
+
# Switch to the "user" user
|
16 |
+
USER user
|
17 |
+
# Set home to the user's home directory
|
18 |
+
ENV HOME=/home/user \
|
19 |
+
PATH=/home/user/.local/bin:$PATH \
|
20 |
+
PYTHONPATH=$HOME/app \
|
21 |
+
PYTHONUNBUFFERED=1 \
|
22 |
+
GRADIO_ALLOW_FLAGGING=never \
|
23 |
+
GRADIO_NUM_PORTS=1 \
|
24 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
25 |
+
GRADIO_THEME=huggingface \
|
26 |
+
SYSTEM=spaces
|
27 |
+
|
28 |
+
# Set the working directory to the user's home directory
|
29 |
+
WORKDIR $HOME/app
|
30 |
+
|
31 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
32 |
+
COPY --chown=user . $HOME/app
|
33 |
+
|
34 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# IMPORTS
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from lang_sam import LangSAM
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
|
9 |
+
def run_lang_sam(input_image, text_prompt, model):
|
10 |
+
image = input_image.convert("RGB").resize((512, 512))
|
11 |
+
masks, _, _, _ = model.predict(
|
12 |
+
image,
|
13 |
+
text_prompt
|
14 |
+
)
|
15 |
+
masks_int = masks.to(torch.uint8)
|
16 |
+
masks_max, _ = masks_int.max(dim=0, keepdim=True)
|
17 |
+
unified_mask = masks_max.squeeze(0).to(torch.bool)
|
18 |
+
return Image.fromarray(
|
19 |
+
(unified_mask[..., None].numpy() * np.array(image)).astype(np.uint8)
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def setup_gradio_interface(model):
|
24 |
+
block = gr.Blocks()
|
25 |
+
|
26 |
+
with block:
|
27 |
+
gr.Markdown("<h1><center>Lang SAM<h1><center>")
|
28 |
+
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
32 |
+
text_prompt = gr.Textbox(label="Enter what you want to segment")
|
33 |
+
run_button = gr.Button(value="Run")
|
34 |
+
|
35 |
+
with gr.Column():
|
36 |
+
output_mask = gr.Image(type="numpy", label="Segmentation Mask")
|
37 |
+
|
38 |
+
run_button.click(
|
39 |
+
fn=lambda image, prompt: run_lang_sam(
|
40 |
+
image, prompt, model,
|
41 |
+
),
|
42 |
+
inputs=[input_image, text_prompt],
|
43 |
+
outputs=[output_mask],
|
44 |
+
)
|
45 |
+
|
46 |
+
gr.Examples(
|
47 |
+
examples=[["bw-image.jpeg", "road"]],
|
48 |
+
inputs=[input_image, text_prompt],
|
49 |
+
outputs=[output_mask],
|
50 |
+
fn=lambda image, prompt: run_lang_sam(
|
51 |
+
image, prompt, model,
|
52 |
+
),
|
53 |
+
cache_examples=True,
|
54 |
+
label="Try this example input!",
|
55 |
+
)
|
56 |
+
|
57 |
+
return block
|
58 |
+
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
model = LangSAM()
|
62 |
+
gradio_interface = setup_gradio_interface(model)
|
63 |
+
gradio_interface.launch(share=False, show_api=False, show_error=True)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gradio==4.5.0
|