urdu_TTS / app.py
arham061's picture
Update app.py
80d1ea2
raw
history blame
3.33 kB
import torch
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
import soundfile as sf
import gradio as gr
import scipy.io.wavfile as wav
import numpy as np
import wave
from datasets import load_dataset, Audio, config
from IPython.display import Audio
# Load the TTS model from the Hugging Face Hub
checkpoint = "arham061/speecht5_finetuned_voxpopuli_nl" # Replace with your actual model name
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
tokenizer = processor.tokenizer
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Buckwalter to Unicode mapping
buck2uni = {
u"\u0627":"A",
u"\u0627":"A",
u"\u0675":"A",
u"\u0673":"A",
u"\u0630":"A",
u"\u0622":"AA",
u"\u0628":"B",
u"\u067E":"P",
u"\u062A":"T",
u"\u0637":"T",
u"\u0679":"T",
u"\u062C":"J",
u"\u0633":"S",
u"\u062B":"S",
u"\u0635":"S",
u"\u0686":"CH",
u"\u062D":"H",
u"\u0647":"H",
u"\u0629":"H",
u"\u06DF":"H",
u"\u062E":"KH",
u"\u062F":"D",
u"\u0688":"D",
u"\u0630":"Z",
u"\u0632":"Z",
u"\u0636":"Z",
u"\u0638":"Z",
u"\u068E":"Z",
u"\u0631":"R",
u"\u0691":"R",
u"\u0634":"SH",
u"\u063A":"GH",
u"\u0641":"F",
u"\u06A9":"K",
u"\u0642":"K",
u"\u06AF":"G",
u"\u0644":"L",
u"\u0645":"M",
u"\u0646":"N",
u"\u06BA":"N",
u"\u0648":"O",
u"\u0649":"Y",
u"\u0626":"Y",
u"\u06CC":"Y",
u"\u06D2":"E",
u"\u06C1":"H",
u"\u064A":"E" ,
u"\u06C2":"AH" ,
u"\u06BE":"H" ,
u"\u0639":"A" ,
u"\u0643":"K" ,
u"\u0621":"A",
u"\u0624":"O",
u"\u060C":"" #seperator ulta comma
}
def transString(string, reverse=0):
"""Given a Unicode string, transliterate into Buckwalter. To go from
Buckwalter back to Unicode, set reverse=1"""
for k, v in buck2uni.items():
if not reverse:
string = string.replace(k, v)
else:
string = string.replace(v, k)
return string
def generate_audio(text):
# Convert input text to Roman Urdu
roman_urdu = transString(text)
# Tokenize the input text
inputs = processor(text=roman_urdu, return_tensors="pt")
# Generate audio from the SpeechT5 model
speaker_embeddings = torch.tensor(np.load("speaker_embeddings.npy"))
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
return speech
def text_to_speech(text):
# Generate audio
audio_output = generate_audio(text)
return Audio(audio_output.numpy(), rate=16000)
# Define the Gradio interface
inputs = gr.inputs.Textbox(label="Enter text in Urdu")
outputs = gr.outputs.Audio(label="Audio")
interface = gr.Interface(fn=text_to_speech, inputs=inputs, outputs=outputs, title="Urdu TTS")
interface.launch()