from transformers import pipeline | |
model_id = "arham061/distilhubert-finetuned-RHD_Dataset" | |
pipe = pipeline("audio-classification", model=model_id) | |
def classify_audio(filepath): | |
preds = pipe(filepath) | |
outputs = {} | |
for p in preds: | |
outputs[p["label"]] = p["score"] | |
return outputs | |
import gradio as gr | |
demo = gr.Interface( | |
fn=classify_audio, inputs=gr.Audio(type="filepath"), outputs="label", examples = ['normal.wav', 'murmur.wav'] | |
) | |
demo.launch(debug=True) |