Spaces:
Sleeping
Sleeping
Commit
·
a2b32c9
1
Parent(s):
63106a4
fixed the model code
Browse files
app.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
| 5 |
from torchvision import transforms
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
import json
|
| 9 |
import os
|
|
|
|
| 10 |
|
| 11 |
# ImageNet-1k class names from HuggingFace
|
| 12 |
# Source: https://huggingface.co/datasets/huggingface/label-files/blob/main/imagenet-1k-id2label.json
|
|
@@ -24,119 +24,6 @@ else:
|
|
| 24 |
json.dump(IMAGENET_CLASSES, f, indent=2)
|
| 25 |
print("ImageNet class labels downloaded successfully!")
|
| 26 |
|
| 27 |
-
# Model definition - ResNet-50 for ImageNet
|
| 28 |
-
class Bottleneck(nn.Module):
|
| 29 |
-
"""Bottleneck block for ResNet-50/101/152"""
|
| 30 |
-
expansion = 4
|
| 31 |
-
|
| 32 |
-
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
|
| 33 |
-
super(Bottleneck, self).__init__()
|
| 34 |
-
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
| 35 |
-
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 36 |
-
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3,
|
| 37 |
-
stride=stride, padding=1, bias=False)
|
| 38 |
-
self.bn2 = nn.BatchNorm2d(out_channels)
|
| 39 |
-
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion,
|
| 40 |
-
kernel_size=1, bias=False)
|
| 41 |
-
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
|
| 42 |
-
self.downsample = downsample
|
| 43 |
-
|
| 44 |
-
def forward(self, x):
|
| 45 |
-
identity = x
|
| 46 |
-
|
| 47 |
-
out = self.conv1(x)
|
| 48 |
-
out = self.bn1(out)
|
| 49 |
-
out = F.relu(out)
|
| 50 |
-
|
| 51 |
-
out = self.conv2(out)
|
| 52 |
-
out = self.bn2(out)
|
| 53 |
-
out = F.relu(out)
|
| 54 |
-
|
| 55 |
-
out = self.conv3(out)
|
| 56 |
-
out = self.bn3(out)
|
| 57 |
-
|
| 58 |
-
if self.downsample is not None:
|
| 59 |
-
identity = self.downsample(x)
|
| 60 |
-
|
| 61 |
-
out += identity
|
| 62 |
-
out = F.relu(out)
|
| 63 |
-
|
| 64 |
-
return out
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
class ResNet50(nn.Module):
|
| 68 |
-
"""ResNet-50 model for ImageNet"""
|
| 69 |
-
|
| 70 |
-
def __init__(self, num_classes=1000):
|
| 71 |
-
super(ResNet50, self).__init__()
|
| 72 |
-
self.in_channels = 64
|
| 73 |
-
|
| 74 |
-
# Initial convolution layer
|
| 75 |
-
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
| 76 |
-
self.bn1 = nn.BatchNorm2d(64)
|
| 77 |
-
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 78 |
-
|
| 79 |
-
# ResNet-50 architecture: [3, 4, 6, 3] blocks
|
| 80 |
-
self.layer1 = self._make_layer(64, 3, stride=1)
|
| 81 |
-
self.layer2 = self._make_layer(128, 4, stride=2)
|
| 82 |
-
self.layer3 = self._make_layer(256, 6, stride=2)
|
| 83 |
-
self.layer4 = self._make_layer(512, 3, stride=2)
|
| 84 |
-
|
| 85 |
-
# Final layers
|
| 86 |
-
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
| 87 |
-
self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes)
|
| 88 |
-
|
| 89 |
-
# Initialize weights
|
| 90 |
-
self._initialize_weights()
|
| 91 |
-
|
| 92 |
-
def _make_layer(self, out_channels, blocks, stride):
|
| 93 |
-
"""Create a residual layer with specified number of blocks"""
|
| 94 |
-
downsample = None
|
| 95 |
-
if stride != 1 or self.in_channels != out_channels * Bottleneck.expansion:
|
| 96 |
-
downsample = nn.Sequential(
|
| 97 |
-
nn.Conv2d(self.in_channels, out_channels * Bottleneck.expansion,
|
| 98 |
-
kernel_size=1, stride=stride, bias=False),
|
| 99 |
-
nn.BatchNorm2d(out_channels * Bottleneck.expansion),
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
layers = []
|
| 103 |
-
layers.append(Bottleneck(self.in_channels, out_channels, stride, downsample))
|
| 104 |
-
self.in_channels = out_channels * Bottleneck.expansion
|
| 105 |
-
|
| 106 |
-
for _ in range(1, blocks):
|
| 107 |
-
layers.append(Bottleneck(self.in_channels, out_channels))
|
| 108 |
-
|
| 109 |
-
return nn.Sequential(*layers)
|
| 110 |
-
|
| 111 |
-
def _initialize_weights(self):
|
| 112 |
-
"""Initialize weights using He initialization"""
|
| 113 |
-
for m in self.modules():
|
| 114 |
-
if isinstance(m, nn.Conv2d):
|
| 115 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 116 |
-
elif isinstance(m, nn.BatchNorm2d):
|
| 117 |
-
nn.init.constant_(m.weight, 1)
|
| 118 |
-
nn.init.constant_(m.bias, 0)
|
| 119 |
-
|
| 120 |
-
def forward(self, x):
|
| 121 |
-
# Initial layers
|
| 122 |
-
x = self.conv1(x)
|
| 123 |
-
x = self.bn1(x)
|
| 124 |
-
x = F.relu(x)
|
| 125 |
-
x = self.maxpool(x)
|
| 126 |
-
|
| 127 |
-
# Residual layers
|
| 128 |
-
x = self.layer1(x)
|
| 129 |
-
x = self.layer2(x)
|
| 130 |
-
x = self.layer3(x)
|
| 131 |
-
x = self.layer4(x)
|
| 132 |
-
|
| 133 |
-
# Final layers
|
| 134 |
-
x = self.avgpool(x)
|
| 135 |
-
x = torch.flatten(x, 1)
|
| 136 |
-
x = self.fc(x)
|
| 137 |
-
|
| 138 |
-
return x
|
| 139 |
-
|
| 140 |
|
| 141 |
# Load model
|
| 142 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from torchvision import transforms
|
| 5 |
import numpy as np
|
| 6 |
from PIL import Image
|
| 7 |
import json
|
| 8 |
import os
|
| 9 |
+
from models import ResNet50
|
| 10 |
|
| 11 |
# ImageNet-1k class names from HuggingFace
|
| 12 |
# Source: https://huggingface.co/datasets/huggingface/label-files/blob/main/imagenet-1k-id2label.json
|
|
|
|
| 24 |
json.dump(IMAGENET_CLASSES, f, indent=2)
|
| 25 |
print("ImageNet class labels downloaded successfully!")
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# Load model
|
| 29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
models.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Bottleneck(nn.Module):
|
| 7 |
+
"""Bottleneck residual block for ResNet-50/101/152"""
|
| 8 |
+
expansion = 4
|
| 9 |
+
|
| 10 |
+
def __init__(self, in_channels, out_channels, stride=1, downsample=None, dropout=0.0):
|
| 11 |
+
super(Bottleneck, self).__init__()
|
| 12 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
| 13 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 14 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
|
| 15 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
| 16 |
+
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
|
| 17 |
+
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
|
| 18 |
+
self.downsample = downsample
|
| 19 |
+
self.dropout = nn.Dropout2d(dropout) if dropout > 0 else None
|
| 20 |
+
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
identity = x
|
| 23 |
+
|
| 24 |
+
out = self.conv1(x)
|
| 25 |
+
out = self.bn1(out)
|
| 26 |
+
out = F.relu(out)
|
| 27 |
+
|
| 28 |
+
out = self.conv2(out)
|
| 29 |
+
out = self.bn2(out)
|
| 30 |
+
out = F.relu(out)
|
| 31 |
+
|
| 32 |
+
if self.dropout is not None:
|
| 33 |
+
out = self.dropout(out)
|
| 34 |
+
|
| 35 |
+
out = self.conv3(out)
|
| 36 |
+
out = self.bn3(out)
|
| 37 |
+
|
| 38 |
+
if self.downsample is not None:
|
| 39 |
+
identity = self.downsample(x)
|
| 40 |
+
|
| 41 |
+
out += identity
|
| 42 |
+
out = F.relu(out)
|
| 43 |
+
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class ResNet50(nn.Module):
|
| 48 |
+
"""ResNet-50 model for ImageNet-1K dataset"""
|
| 49 |
+
|
| 50 |
+
def __init__(self, num_classes=1000, dropout=0.0):
|
| 51 |
+
super(ResNet50, self).__init__()
|
| 52 |
+
self.in_channels = 64
|
| 53 |
+
|
| 54 |
+
# Initial convolution layer for ImageNet (224x224 input)
|
| 55 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
| 56 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 57 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 58 |
+
|
| 59 |
+
# ResNet-50 architecture: [3, 4, 6, 3] blocks per layer group
|
| 60 |
+
self.layer1 = self._make_layer(64, 3, stride=1, dropout=dropout)
|
| 61 |
+
self.layer2 = self._make_layer(128, 4, stride=2, dropout=dropout)
|
| 62 |
+
self.layer3 = self._make_layer(256, 6, stride=2, dropout=dropout)
|
| 63 |
+
self.layer4 = self._make_layer(512, 3, stride=2, dropout=dropout)
|
| 64 |
+
|
| 65 |
+
# Final layers for ImageNet
|
| 66 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
| 67 |
+
self.dropout = nn.Dropout(0.5) # Standard dropout for ImageNet
|
| 68 |
+
self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes)
|
| 69 |
+
|
| 70 |
+
# Initialize weights
|
| 71 |
+
self._initialize_weights()
|
| 72 |
+
|
| 73 |
+
def _make_layer(self, out_channels, blocks, stride, dropout=0.0):
|
| 74 |
+
"""Create a residual layer with specified number of blocks"""
|
| 75 |
+
downsample = None
|
| 76 |
+
if stride != 1 or self.in_channels != out_channels * Bottleneck.expansion:
|
| 77 |
+
downsample = nn.Sequential(
|
| 78 |
+
nn.Conv2d(self.in_channels, out_channels * Bottleneck.expansion,
|
| 79 |
+
kernel_size=1, stride=stride, bias=False),
|
| 80 |
+
nn.BatchNorm2d(out_channels * Bottleneck.expansion),
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
layers = []
|
| 84 |
+
layers.append(Bottleneck(self.in_channels, out_channels, stride, downsample, dropout))
|
| 85 |
+
self.in_channels = out_channels * Bottleneck.expansion
|
| 86 |
+
|
| 87 |
+
for _ in range(1, blocks):
|
| 88 |
+
layers.append(Bottleneck(self.in_channels, out_channels, dropout=dropout))
|
| 89 |
+
|
| 90 |
+
return nn.Sequential(*layers)
|
| 91 |
+
|
| 92 |
+
def _initialize_weights(self):
|
| 93 |
+
"""Initialize weights using He initialization"""
|
| 94 |
+
for m in self.modules():
|
| 95 |
+
if isinstance(m, nn.Conv2d):
|
| 96 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 97 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 98 |
+
nn.init.constant_(m.weight, 1)
|
| 99 |
+
nn.init.constant_(m.bias, 0)
|
| 100 |
+
|
| 101 |
+
def forward(self, x):
|
| 102 |
+
# Initial layers
|
| 103 |
+
x = self.conv1(x)
|
| 104 |
+
x = self.bn1(x)
|
| 105 |
+
x = F.relu(x)
|
| 106 |
+
x = self.maxpool(x)
|
| 107 |
+
|
| 108 |
+
# Residual layers
|
| 109 |
+
x = self.layer1(x)
|
| 110 |
+
x = self.layer2(x)
|
| 111 |
+
x = self.layer3(x)
|
| 112 |
+
x = self.layer4(x)
|
| 113 |
+
|
| 114 |
+
# Final layers
|
| 115 |
+
x = self.avgpool(x)
|
| 116 |
+
x = torch.flatten(x, 1)
|
| 117 |
+
x = self.dropout(x)
|
| 118 |
+
x = self.fc(x)
|
| 119 |
+
|
| 120 |
+
return x
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
# Test the model
|
| 125 |
+
model = ResNet50(num_classes=1000)
|
| 126 |
+
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 127 |
+
print(f"Model trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
|
| 128 |
+
|
| 129 |
+
# Test forward pass
|
| 130 |
+
x = torch.randn(1, 3, 224, 224) # ImageNet size (224x224)
|
| 131 |
+
y = model(x)
|
| 132 |
+
print(f"Input shape: {x.shape}")
|
| 133 |
+
print(f"Output shape: {y.shape}")
|
| 134 |
+
print(f"Expected output classes: {y.shape[1]}")
|