arghadip2002 commited on
Commit
d2224d7
Β·
verified Β·
1 Parent(s): a8688f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -2
README.md CHANGED
@@ -94,18 +94,27 @@ npm run dev
94
 
95
  ## πŸ“ License
96
 
97
-
98
 
99
  ## πŸ‘¨β€πŸ’» Author
100
 
101
  Arghadip Biswas and Sayan Das
102
 
103
- ## πŸ™ Acknowledgments
104
 
105
  - Dataset: https://github.com/arghadip2002/SAETCN-and-SASNET-Architectures/blob/main/dataLinks
106
  - Based on SAETCN architecture
107
 
108
 
 
 
 
 
 
 
 
 
 
109
  @article{das2025novel,
110
  title={Novel Deep Learning Architectures for Classification and Segmentation of Brain Tumors from MRI Images},
111
  author={Das, Sayan and Biswas, Arghadip},
@@ -114,3 +123,11 @@ Arghadip Biswas and Sayan Das
114
  archivePrefix={arXiv},
115
  primaryClass={cs.CV}
116
  }
 
 
 
 
 
 
 
 
 
94
 
95
  ## πŸ“ License
96
 
97
+ MIT LICENSE
98
 
99
  ## πŸ‘¨β€πŸ’» Author
100
 
101
  Arghadip Biswas and Sayan Das
102
 
103
+ ## πŸ“Š Dataset
104
 
105
  - Dataset: https://github.com/arghadip2002/SAETCN-and-SASNET-Architectures/blob/main/dataLinks
106
  - Based on SAETCN architecture
107
 
108
 
109
+ ## πŸ“œ Citation & Academic Acknowledgment
110
+
111
+ This repository provides the **NeuroGuard Web Application**, which is the deployment of the novel **SAETCN** and **SAS-Net** architectures detailed in our research paper.
112
+
113
+ If you use this deployed software or its code in your academic work, please cite the underlying paper to acknowledge the methodology and results:
114
+
115
+ ### ✍️ Preferred Citation (BibTeX)
116
+
117
+ ```bibtex
118
  @article{das2025novel,
119
  title={Novel Deep Learning Architectures for Classification and Segmentation of Brain Tumors from MRI Images},
120
  author={Das, Sayan and Biswas, Arghadip},
 
123
  archivePrefix={arXiv},
124
  primaryClass={cs.CV}
125
  }
126
+
127
+ ```
128
+
129
+ #### πŸ”— Paper Link
130
+
131
+ The full paper is publicly available on the arXiv preprint server: [arXiv:2512.06531](https://www.arxiv.org/abs/2512.06531)
132
+
133
+ ###### ⭐ Note: Citing the paper is essential for the advancement of open science and ensures proper credit for the research that powers this application. Thank you for your support!