Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration | |
from PIL import Image | |
# Load the model and processor | |
model_id = "brucewayne0459/paligemma_derm" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id) | |
model.eval() | |
# Set device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# Add Hugging Face logo at the top | |
st.markdown( | |
""" | |
<style> | |
.huggingface-logo { | |
display: flex; | |
justify-content: center; | |
margin-bottom: 20px; | |
} | |
.huggingface-logo img { | |
width: 150px; | |
} | |
</style> | |
<div class="huggingface-logo"> | |
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" alt="Hugging Face Logo"> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Streamlit app title and instructions | |
st.title("VisionDerm") | |
st.write("Upload an image or use your camera to identify the skin condition.") | |
# Column layout for input and display | |
col1, col2 = st.columns([3, 2]) | |
with col1: | |
# File uploader for image | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
# Camera input for photo capture | |
camera_photo = st.camera_input("Take a photo") | |
prompt = 'Identify the skin condition?' | |
# Choose input image (either uploaded or taken by camera) | |
input_image = None | |
if camera_photo: | |
input_image = Image.open(camera_photo) | |
elif uploaded_file: | |
input_image = Image.open(uploaded_file) | |
with col2: | |
if input_image: | |
# Display the image | |
resized_image = input_image.resize((300, 300)) | |
st.image(resized_image, caption="Selected Image (300x300)", use_container_width=True) | |
# Resize image for processing (512x512 pixels) | |
max_size = (512, 512) | |
processed_image = input_image.resize(max_size) | |
# Predict automatically when the image is uploaded or captured | |
with st.spinner("Processing..."): | |
try: | |
# Prepare inputs | |
inputs = processor( | |
text=prompt, | |
images=processed_image, | |
return_tensors="pt", | |
padding="longest" | |
).to(device) | |
# Generate output | |
default_max_tokens = 50 # Set a default value for max tokens | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_new_tokens=default_max_tokens) | |
# Decode output and remove the prompt text | |
decoded_output = processor.decode(outputs[0], skip_special_tokens=True) | |
if prompt in decoded_output: | |
decoded_output = decoded_output.replace(prompt, "").strip() | |
# Capitalize the first letter of each word | |
decoded_output = decoded_output.title() | |
# Display result | |
st.success("Analysis Complete!") | |
st.write("**Model Output:**", decoded_output) | |
except Exception as e: | |
st.error(f"Error: {str(e)}") | |
# Add team information at the bottom | |
st.markdown("---") # Add a horizontal line for separation | |
st.info(""" | |
### Team: Mahasigma Berprestasi | |
- **Muhammad Karov Ardava Barus** ; 103052300001 | |
- **Akmal Yaasir Fauzaan** ; 103052300008 | |
- **Farand Diy Dat Mahazalfaa** ; 103052300050 | |
- **Hauzan Rafi Attallah**; 103052330011 | |
""") | |