Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import mojimoji
|
7 |
+
import polars as pl
|
8 |
+
import re
|
9 |
+
import json
|
10 |
+
from datetime import datetime, timezone, timedelta
|
11 |
+
from transformers import pipeline
|
12 |
+
from transformers import AutoModelForSequenceClassification
|
13 |
+
from transformers import AutoTokenizer, DistilBertTokenizerFast
|
14 |
+
|
15 |
+
# version: 0.2.1
|
16 |
+
|
17 |
+
from gradio import FlaggingCallback, utils
|
18 |
+
from collections import OrderedDict
|
19 |
+
from gradio.components import Component
|
20 |
+
from gradio_client import utils as client_utils
|
21 |
+
from typing import Sequence, Any
|
22 |
+
from pathlib import Path
|
23 |
+
import huggingface_hub
|
24 |
+
import uuid
|
25 |
+
import filelock
|
26 |
+
import csv
|
27 |
+
|
28 |
+
class HuggingFaceDatasetSaver(FlaggingCallback):
|
29 |
+
"""
|
30 |
+
A callback that saves each flagged sample (both the input and output data) to a HuggingFace dataset.
|
31 |
+
|
32 |
+
Example:
|
33 |
+
import gradio as gr
|
34 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes")
|
35 |
+
def image_classifier(inp):
|
36 |
+
return {'cat': 0.3, 'dog': 0.7}
|
37 |
+
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
|
38 |
+
allow_flagging="manual", flagging_callback=hf_writer)
|
39 |
+
Guides: using-flagging
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
hf_token: str,
|
45 |
+
dataset_name: str,
|
46 |
+
private: bool = False,
|
47 |
+
info_filename: str = "dataset_info.json",
|
48 |
+
separate_dirs: bool = False,
|
49 |
+
):
|
50 |
+
"""
|
51 |
+
Parameters:
|
52 |
+
hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset (defaults to the registered one).
|
53 |
+
dataset_name: The repo_id of the dataset to save the data to, e.g. "image-classifier-1" or "username/image-classifier-1".
|
54 |
+
private: Whether the dataset should be private (defaults to False).
|
55 |
+
info_filename: The name of the file to save the dataset info (defaults to "dataset_infos.json").
|
56 |
+
separate_dirs: If True, each flagged item will be saved in a separate directory. This makes the flagging more robust to concurrent editing, but may be less convenient to use.
|
57 |
+
"""
|
58 |
+
self.hf_token = hf_token
|
59 |
+
self.dataset_id = dataset_name # TODO: rename parameter (but ensure backward compatibility somehow)
|
60 |
+
self.dataset_private = private
|
61 |
+
self.info_filename = info_filename
|
62 |
+
self.separate_dirs = separate_dirs
|
63 |
+
|
64 |
+
def setup(self, components: Sequence[Component], flagging_dir: str):
|
65 |
+
"""
|
66 |
+
Params:
|
67 |
+
flagging_dir (str): local directory where the dataset is cloned,
|
68 |
+
updated, and pushed from.
|
69 |
+
"""
|
70 |
+
# Setup dataset on the Hub
|
71 |
+
self.dataset_id = huggingface_hub.create_repo(
|
72 |
+
repo_id=self.dataset_id,
|
73 |
+
token=self.hf_token,
|
74 |
+
private=self.dataset_private,
|
75 |
+
repo_type="dataset",
|
76 |
+
exist_ok=True,
|
77 |
+
).repo_id
|
78 |
+
path_glob = "**/*.jsonl" if self.separate_dirs else "data.csv"
|
79 |
+
huggingface_hub.metadata_update(
|
80 |
+
repo_id=self.dataset_id,
|
81 |
+
repo_type="dataset",
|
82 |
+
metadata={
|
83 |
+
"configs": [
|
84 |
+
{
|
85 |
+
"config_name": "default",
|
86 |
+
"data_files": [{"split": "train", "path": path_glob}],
|
87 |
+
}
|
88 |
+
]
|
89 |
+
},
|
90 |
+
overwrite=True,
|
91 |
+
token=self.hf_token,
|
92 |
+
)
|
93 |
+
|
94 |
+
# Setup flagging dir
|
95 |
+
self.components = components
|
96 |
+
self.dataset_dir = (
|
97 |
+
Path(flagging_dir).absolute() / self.dataset_id.split("/")[-1]
|
98 |
+
)
|
99 |
+
self.dataset_dir.mkdir(parents=True, exist_ok=True)
|
100 |
+
self.infos_file = self.dataset_dir / self.info_filename
|
101 |
+
|
102 |
+
# Download remote files to local
|
103 |
+
remote_files = [self.info_filename]
|
104 |
+
if not self.separate_dirs:
|
105 |
+
# No separate dirs => means all data is in the same CSV file => download it to get its current content
|
106 |
+
remote_files.append("data.csv")
|
107 |
+
|
108 |
+
for filename in remote_files:
|
109 |
+
try:
|
110 |
+
huggingface_hub.hf_hub_download(
|
111 |
+
repo_id=self.dataset_id,
|
112 |
+
repo_type="dataset",
|
113 |
+
filename=filename,
|
114 |
+
local_dir=self.dataset_dir,
|
115 |
+
token=self.hf_token,
|
116 |
+
)
|
117 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
118 |
+
pass
|
119 |
+
|
120 |
+
def flag(
|
121 |
+
self,
|
122 |
+
flag_data: list[Any],
|
123 |
+
flag_option: str = "",
|
124 |
+
username: str | None = None,
|
125 |
+
) -> int:
|
126 |
+
if self.separate_dirs:
|
127 |
+
# JSONL files to support dataset preview on the Hub
|
128 |
+
unique_id = str(uuid.uuid4())
|
129 |
+
components_dir = self.dataset_dir / unique_id
|
130 |
+
data_file = components_dir / "metadata.jsonl"
|
131 |
+
path_in_repo = unique_id # upload in sub folder (safer for concurrency)
|
132 |
+
else:
|
133 |
+
# Unique CSV file
|
134 |
+
components_dir = self.dataset_dir
|
135 |
+
data_file = components_dir / "data.csv"
|
136 |
+
path_in_repo = None # upload at root level
|
137 |
+
|
138 |
+
return self._flag_in_dir(
|
139 |
+
data_file=data_file,
|
140 |
+
components_dir=components_dir,
|
141 |
+
path_in_repo=path_in_repo,
|
142 |
+
flag_data=flag_data,
|
143 |
+
flag_option=flag_option,
|
144 |
+
username=username or "",
|
145 |
+
)
|
146 |
+
|
147 |
+
def _flag_in_dir(
|
148 |
+
self,
|
149 |
+
data_file: Path,
|
150 |
+
components_dir: Path,
|
151 |
+
path_in_repo: str | None,
|
152 |
+
flag_data: list[Any],
|
153 |
+
flag_option: str = "",
|
154 |
+
username: str = "",
|
155 |
+
) -> int:
|
156 |
+
# Deserialize components (write images/audio to files)
|
157 |
+
features, row = self._deserialize_components(
|
158 |
+
components_dir, flag_data, flag_option, username
|
159 |
+
)
|
160 |
+
|
161 |
+
# Write generic info to dataset_infos.json + upload
|
162 |
+
with filelock.FileLock(str(self.infos_file) + ".lock"):
|
163 |
+
if not self.infos_file.exists():
|
164 |
+
self.infos_file.write_text(
|
165 |
+
json.dumps({"flagged": {"features": features}})
|
166 |
+
)
|
167 |
+
|
168 |
+
huggingface_hub.upload_file(
|
169 |
+
repo_id=self.dataset_id,
|
170 |
+
repo_type="dataset",
|
171 |
+
token=self.hf_token,
|
172 |
+
path_in_repo=self.infos_file.name,
|
173 |
+
path_or_fileobj=self.infos_file,
|
174 |
+
)
|
175 |
+
|
176 |
+
headers = list(features.keys())
|
177 |
+
|
178 |
+
if not self.separate_dirs:
|
179 |
+
with filelock.FileLock(components_dir / ".lock"):
|
180 |
+
sample_nb = self._save_as_csv(data_file, headers=headers, row=row)
|
181 |
+
sample_name = str(sample_nb)
|
182 |
+
huggingface_hub.upload_folder(
|
183 |
+
repo_id=self.dataset_id,
|
184 |
+
repo_type="dataset",
|
185 |
+
commit_message=f"Flagged sample #{sample_name}",
|
186 |
+
path_in_repo=path_in_repo,
|
187 |
+
ignore_patterns="*.lock",
|
188 |
+
folder_path=components_dir,
|
189 |
+
token=self.hf_token,
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
sample_name = self._save_as_jsonl(data_file, headers=headers, row=row)
|
193 |
+
sample_nb = len(
|
194 |
+
[path for path in self.dataset_dir.iterdir() if path.is_dir()]
|
195 |
+
)
|
196 |
+
huggingface_hub.upload_folder(
|
197 |
+
repo_id=self.dataset_id,
|
198 |
+
repo_type="dataset",
|
199 |
+
commit_message=f"Flagged sample #{sample_name}",
|
200 |
+
path_in_repo=path_in_repo,
|
201 |
+
ignore_patterns="*.lock",
|
202 |
+
folder_path=components_dir,
|
203 |
+
token=self.hf_token,
|
204 |
+
)
|
205 |
+
|
206 |
+
return sample_nb
|
207 |
+
|
208 |
+
@staticmethod
|
209 |
+
def _save_as_csv(data_file: Path, headers: list[str], row: list[Any]) -> int:
|
210 |
+
"""Save data as CSV and return the sample name (row number)."""
|
211 |
+
is_new = not data_file.exists()
|
212 |
+
|
213 |
+
with data_file.open("a", newline="", encoding="utf-8") as csvfile:
|
214 |
+
writer = csv.writer(csvfile)
|
215 |
+
|
216 |
+
# Write CSV headers if new file
|
217 |
+
if is_new:
|
218 |
+
writer.writerow(utils.sanitize_list_for_csv(headers))
|
219 |
+
|
220 |
+
# Write CSV row for flagged sample
|
221 |
+
writer.writerow(utils.sanitize_list_for_csv(row))
|
222 |
+
|
223 |
+
with data_file.open(encoding="utf-8") as csvfile:
|
224 |
+
return sum(1 for _ in csv.reader(csvfile)) - 1
|
225 |
+
|
226 |
+
@staticmethod
|
227 |
+
def _save_as_jsonl(data_file: Path, headers: list[str], row: list[Any]) -> str:
|
228 |
+
"""Save data as JSONL and return the sample name (uuid)."""
|
229 |
+
Path.mkdir(data_file.parent, parents=True, exist_ok=True)
|
230 |
+
with open(data_file, "w", encoding="utf-8") as f:
|
231 |
+
json.dump(dict(zip(headers, row)), f)
|
232 |
+
return data_file.parent.name
|
233 |
+
|
234 |
+
def _deserialize_components(
|
235 |
+
self,
|
236 |
+
data_dir: Path,
|
237 |
+
flag_data: list[Any],
|
238 |
+
flag_option: str = "",
|
239 |
+
username: str = "",
|
240 |
+
) -> tuple[dict[Any, Any], list[Any]]:
|
241 |
+
"""Deserialize components and return the corresponding row for the flagged sample.
|
242 |
+
|
243 |
+
Images/audio are saved to disk as individual files.
|
244 |
+
"""
|
245 |
+
# Components that can have a preview on dataset repos
|
246 |
+
file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"}
|
247 |
+
|
248 |
+
# Generate the row corresponding to the flagged sample
|
249 |
+
features = OrderedDict()
|
250 |
+
row = []
|
251 |
+
for component, sample in zip(self.components, flag_data):
|
252 |
+
# Get deserialized object (will save sample to disk if applicable -file, audio, image,...-)
|
253 |
+
label = component.label or ""
|
254 |
+
save_dir = data_dir / client_utils.strip_invalid_filename_characters(label)
|
255 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
256 |
+
deserialized = utils.simplify_file_data_in_str(
|
257 |
+
component.flag(sample, save_dir)
|
258 |
+
)
|
259 |
+
|
260 |
+
# Add deserialized object to row
|
261 |
+
features[label] = {"dtype": "string", "_type": "Value"}
|
262 |
+
try:
|
263 |
+
deserialized_path = Path(deserialized)
|
264 |
+
if not deserialized_path.exists():
|
265 |
+
raise FileNotFoundError(f"File {deserialized} not found")
|
266 |
+
row.append(str(deserialized_path.relative_to(self.dataset_dir)))
|
267 |
+
except (FileNotFoundError, TypeError, ValueError, OSError):
|
268 |
+
deserialized = "" if deserialized is None else str(deserialized)
|
269 |
+
row.append(deserialized)
|
270 |
+
|
271 |
+
# If component is eligible for a preview, add the URL of the file
|
272 |
+
# Be mindful that images and audio can be None
|
273 |
+
if isinstance(component, tuple(file_preview_types)): # type: ignore
|
274 |
+
for _component, _type in file_preview_types.items():
|
275 |
+
if isinstance(component, _component):
|
276 |
+
features[label + " file"] = {"_type": _type}
|
277 |
+
break
|
278 |
+
if deserialized:
|
279 |
+
path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL
|
280 |
+
Path(deserialized).relative_to(self.dataset_dir)
|
281 |
+
).replace("\\", "/")
|
282 |
+
row.append(
|
283 |
+
huggingface_hub.hf_hub_url(
|
284 |
+
repo_id=self.dataset_id,
|
285 |
+
filename=path_in_repo,
|
286 |
+
repo_type="dataset",
|
287 |
+
)
|
288 |
+
)
|
289 |
+
else:
|
290 |
+
row.append("")
|
291 |
+
|
292 |
+
timestamp = datetime.now(timezone(timedelta(hours=9))).isoformat()
|
293 |
+
features["flag"] = {"dtype": "string", "_type": "Value"}
|
294 |
+
features["username"] = {"dtype": "string", "_type": "Value"}
|
295 |
+
features["timestamp"] = {"dtype": "string", "_type": "Value"}
|
296 |
+
row.append(flag_option)
|
297 |
+
row.append(username)
|
298 |
+
row.append(timestamp)
|
299 |
+
return features, row
|
300 |
+
|
301 |
+
# Get environment variable
|
302 |
+
hf_token = os.getenv('HF_TOKEN')
|
303 |
+
|
304 |
+
if torch.cuda.is_available():
|
305 |
+
print("GPU is enabled.")
|
306 |
+
print("device count: {}, current device: {}".format(torch.cuda.device_count(), torch.cuda.current_device()))
|
307 |
+
else:
|
308 |
+
print("GPU is not enabled.")
|
309 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
310 |
+
|
311 |
+
# Prepare logger for flagging
|
312 |
+
hf_writer = HuggingFaceDatasetSaver(hf_token, "crowdsourced-sentiment_analysis")
|
313 |
+
|
314 |
+
# Prepare model
|
315 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base", token=hf_token)
|
316 |
+
model = AutoModelForSequenceClassification.from_pretrained("arcleife/roberta-sentiment-id", num_labels=3, token=hf_token).to(device)
|
317 |
+
|
318 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device, return_token_type_ids=False)
|
319 |
+
|
320 |
+
def get_label(result):
|
321 |
+
if result[0]['label'] == "LABEL_0":
|
322 |
+
return "POSITIVE"
|
323 |
+
elif result[0]['label'] == "LABEL_1":
|
324 |
+
return "NEUTRAL"
|
325 |
+
else:
|
326 |
+
return "NEGATIVE"
|
327 |
+
|
328 |
+
def text_classification(text):
|
329 |
+
result = pipe(text)
|
330 |
+
sentiment_label = get_label(result)
|
331 |
+
sentiment_score = result[0]['score']
|
332 |
+
return sentiment_label, sentiment_score
|
333 |
+
|
334 |
+
examples=["Makanannya ga enak ini", "Nyaman ya tempatnya"]
|
335 |
+
|
336 |
+
io = gr.Interface(fn=text_classification,
|
337 |
+
inputs=gr.Textbox(lines=2, label="Text", placeholder="Enter text here..."),
|
338 |
+
outputs=["text", "number"],
|
339 |
+
title="Text Classification",
|
340 |
+
description="Enter a text and see the text classification result!",
|
341 |
+
examples=examples,
|
342 |
+
# flagging_mode="manual",
|
343 |
+
# flagging_options=["TOXIC", "NONTOXIC"],
|
344 |
+
# flagging_callback=hf_writer
|
345 |
+
)
|
346 |
+
|
347 |
+
io.launch(inline=False)
|
348 |
+
|
349 |
+
# with gr.Blocks() as main_interface:
|
350 |
+
# gr.LoginButton()
|
351 |
+
|
352 |
+
# gr.Markdown("# 人格否定検知")
|
353 |
+
# gr.Markdown("**Input**にテキストを入力し、**実行**をクリックしてください。")
|
354 |
+
# with gr.Row():
|
355 |
+
# with gr.Column():
|
356 |
+
# inp = gr.Textbox(placeholder="テキストを入力してください。", label="Input", lines=4)
|
357 |
+
# with gr.Column():
|
358 |
+
# out = gr.Label(label="Result")
|
359 |
+
# flag = gr.Button("Flag")
|
360 |
+
# btn = gr.Button("実行")
|
361 |
+
# btn.click(fn=text_classification, inputs=inp, outputs=out)
|
362 |
+
|
363 |
+
# main_interface.launch()
|