Hindi_LLM_arena / app.py
archit11's picture
Update app.py
9dddbe5 verified
raw
history blame
8.31 kB
import os
import requests
import gradio as gr
import torch
import spaces
from threading import Thread
from typing import Iterator, List, Tuple
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Description for the Gradio Interface
DESCRIPTION = """\
# Zero GPU Model Comparison Arena
Select two different models from the dropdowns and see how they perform on the same input.
"""
# Constants
MAX_MAX_NEW_TOKENS = 256
DEFAULT_MAX_NEW_TOKENS = 128
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Model options
MODEL_OPTIONS = [
"smangrul/OpenHathi-7B-Hi-v0.1-Instruct",
"TokenBender/Navarna_v0_1_OpenHermes_Hindi"
]
# Load models and tokenizers
models = {}
tokenizers = {}
for model_id in MODEL_OPTIONS:
try:
tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
models[model_id] = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
load_in_8bit=True,
)
models[model_id].eval()
# Set pad_token_id to eos_token_id if it's not set
if tokenizers[model_id].pad_token_id is None:
tokenizers[model_id].pad_token_id = tokenizers[model_id].eos_token_id
except Exception as e:
print(f"Error loading model {model_id}: {e}")
# Function to log comparisons
def log_comparison(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None):
log_data = {
"question": question,
"model1": {"name": model1_name, "answer": answer1},
"model2": {"name": model2_name, "answer": answer2},
"winner": winner
}
try:
response = requests.post('http://144.24.151.32:5000/log', json=log_data, timeout=5)
if response.status_code == 200:
print("Successfully logged to server")
else:
print(f"Failed to log to server. Status code: {response.status_code}")
except requests.RequestException as e:
print(f"Error sending log to server: {e}")
def prepare_input(model_id: str, message: str, chat_history: List[Tuple[str, str]]):
tokenizer = tokenizers[model_id]
try:
# Prepare inputs for the model
inputs = tokenizer(
[x[1] for x in chat_history] + [message],
return_tensors="pt",
truncation=True,
padding=True,
max_length=MAX_INPUT_TOKEN_LENGTH,
return_attention_mask=True # Include the attention_mask
)
except Exception as e:
print(f"Error preparing input for model {model_id}: {e}")
inputs = tokenizer([message], return_tensors="pt", padding=True, max_length=MAX_INPUT_TOKEN_LENGTH, return_attention_mask=True)
return inputs
# Function to generate responses from models
@spaces.GPU(duration=120)
def generate(
model_id: str,
message: str,
chat_history: List[Tuple[str, str]],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.4,
top_p: float = 0.95,
) -> Iterator[str]:
model = models[model_id]
tokenizer = tokenizers[model_id]
inputs = prepare_input(model_id, message, chat_history)
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask # Get attention_mask
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
# Ensure batch size is 1
if input_ids.shape[0] != 1:
input_ids = input_ids[:1]
attention_mask = attention_mask[:1]
input_ids = input_ids.to(model.device)
attention_mask = attention_mask.to(model.device) # Move to the same device as input_ids
try:
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
attention_mask=attention_mask, # Pass the attention_mask
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1,
pad_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
except Exception as e:
print(f"Error generating response from model {model_id}: {e}")
yield "Error generating response."
# Function to compare two models
def compare_models(
model1_name: str,
model2_name: str,
message: str,
chat_history1: List[Tuple[str, str]],
chat_history2: List[Tuple[str, str]],
max_new_tokens: int,
temperature: float,
top_p: float,
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
if model1_name == model2_name:
error_message = [("System", "Error: Please select two different models.")]
return error_message, error_message, chat_history1, chat_history2
try:
output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p)))
output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p)))
chat_history1.append((message, output1))
chat_history2.append((message, output2))
log_comparison(model1_name, model2_name, message, output1, output2)
return chat_history1, chat_history2, chat_history1, chat_history2
except Exception as e:
print(f"Error comparing models: {e}")
error_message = [("System", "Error comparing models.")]
return error_message, error_message, chat_history1, chat_history2
# Function to log the voting result
def vote_better(model1_name, model2_name, question, answer1, answer2, choice):
winner = model1_name if choice == "Model 1" else model2_name
log_comparison(model1_name, model2_name, question, answer1, answer2, winner)
return f"You voted that {winner} performs better. This has been logged."
# Gradio UI setup
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0])
chatbot1 = gr.Chatbot(label="Model 1 Output")
with gr.Column():
model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1])
chatbot2 = gr.Chatbot(label="Model 2 Output")
text_input = gr.Textbox(label="Input Text", lines=3)
with gr.Row():
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95)
compare_btn = gr.Button("Compare Models")
with gr.Row():
better1_btn = gr.Button("Model 1 is Better")
better2_btn = gr.Button("Model 2 is Better")
vote_output = gr.Textbox(label="Voting Result")
compare_btn.click(
compare_models,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p],
outputs=[chatbot1, chatbot2, chatbot1, chatbot2]
)
better1_btn.click(
vote_better,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)],
outputs=[vote_output]
)
better2_btn.click(
vote_better,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)],
outputs=[vote_output]
)
# Main function to run the Gradio app
if __name__ == "__main__":
demo.queue(max_size=3).launch(share=True)