archietram
upload files
c1a13fc
raw
history blame
1.1 kB
from fastai.vision.all import *
import gradio as gr
def get_x(): return _
def get_y(): return _
learn = load_learner("export.pkl")
labels = learn.dls.vocab
def infer(img):
img = PILImage.create(img)
_pred, _pred_w_idx, probs = learn.predict(img)
# gradio doesn't support tensors, so converting to float
labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)}
return labels_probs
# get the inputs
inputs = gr.inputs.Image(shape=(192, 192))
# the app outputs two segmented images
outputs = gr.outputs.Label(num_top_classes=3)
EXAMPLES_PATH = Path('./examples')
examples = [f'{EXAMPLES_PATH}/{f.name}' for f in EXAMPLES_PATH.iterdir()]
# it's good practice to pass examples, description and a title to guide users
title = 'Multiple_Object Detector'
description = 'This app detects objects that appear in the image'
article = "Author: <a href=\"https://huggingface.co/archietram\">Archie Tram</a>. "
intf = gr.Interface(fn=infer, inputs=inputs, outputs=outputs, examples=examples, title=title, description=description, article=article)
intf.launch(inline=False)