JurioSync.ai / app.py
arborvitae's picture
Update app.py
fb7d447
raw
history blame
5.43 kB
import streamlit as st
import os
import base64
import time
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
import torch
import textwrap
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from constants import CHROMA_SETTINGS
from streamlit_chat import message
st.set_page_config(layout="wide")
device = torch.device('cpu')
checkpoint = "MBZUAI/LaMini-T5-738M"
print(f"Checkpoint path: {checkpoint}") # Add this line for debugging
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
device_map=device,
torch_dtype=torch.float32
)
persist_directory = "db"
@st.cache_resource
def data_ingestion():
for root, dirs, files in os.walk("docs"):
for file in files:
if file.endswith(".pdf"):
print(file)
loader = PDFMinerLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
texts = text_splitter.split_documents(documents)
#create embeddings here
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
#create vector store here
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
db.persist()
db=None
@st.cache_resource
def llm_pipeline():
pipe = pipeline(
'text2text-generation',
model = base_model,
tokenizer = tokenizer,
max_length = 256,
do_sample = True,
temperature = 0.3,
top_p= 0.95,
device=device
)
local_llm = HuggingFacePipeline(pipeline=pipe)
return local_llm
@st.cache_resource
def qa_llm():
llm = llm_pipeline()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma(persist_directory="db", embedding_function = embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()
qa = RetrievalQA.from_chain_type(
llm = llm,
chain_type = "stuff",
retriever = retriever,
return_source_documents=True
)
return qa
def process_answer(instruction):
response = ''
instruction = instruction
qa = qa_llm()
generated_text = qa(instruction)
answer = generated_text['result']
return answer
def get_file_size(file):
file.seek(0, os.SEEK_END)
file_size = file.tell()
file.seek(0)
return file_size
# Specify the path to your PDF document directly
filepath = "removed_null.pdf"
@st.cache_data
#function to display the PDF of a given file
def displayPDF(file):
# Opening file from file path
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# Embedding PDF in HTML
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
# Displaying File
st.markdown(pdf_display, unsafe_allow_html=True)
# Display conversation history using Streamlit messages
def display_conversation(history):
for i in range(len(history["generated"])):
message(history["past"][i], is_user=True, key=str(i) + "_user")
message(history["generated"][i],key=str(i))
def main():
st.markdown("<h1 style='text-align: center; color: blue;'>JurioSync📄 </h1>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center; color: grey;'>Ai Powered Legal Document Assistant</h3>", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center; color:red;'>Upload your Legal Document 👇</h2>", unsafe_allow_html=True)
col1, col2= st.columns([1,2])
with col1:
st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
# You can display any additional file details here if needed
st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
pdf_view = displayPDF(filepath)
with col2:
with st.spinner('Embeddings are in process...'):
ingested_data = data_ingestion()
st.success('Embeddings are created successfully!')
st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)
user_input = st.text_input("", key="input")
# Initialize session state for generated responses and past messages
if "generated" not in st.session_state:
st.session_state["generated"] = ["I am ready to help you"]
if "past" not in st.session_state:
st.session_state["past"] = ["Hey there!"]
# Search the database for a response based on user input and update session state
if user_input:
answer = process_answer({'query': user_input})
st.session_state["past"].append(user_input)
response = answer
st.session_state["generated"].append(response)
# Display conversation history using Streamlit messages
if st.session_state["generated"]:
display_conversation(st.session_state)
if __name__ == "__main__":
main()