Aravind Sundaresan
Added project description
92b7091
raw
history blame
1.36 kB
import gradio as gr
import numpy as np
from PIL import Image
import tensorflow as tf
import tensorflow_hub as hub
style_transfer_model = hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2")
def perform_style_transfer(content_image, style_image):
content_image = tf.convert_to_tensor(content_image, np.float32)[tf.newaxis, ...] / 255.
style_image = tf.convert_to_tensor(style_image, np.float32)[tf.newaxis, ...] / 255.
output = style_transfer_model(content_image, style_image)
stylized_image = output[0]
return Image.fromarray(np.uint8(stylized_image[0] * 255))
content_image_input = gr.inputs.Image(label="Content Image")
style_image_input = gr.inputs.Image(shape=(256, 256), label="Style Image")
app_interface = gr.Interface(fn=perform_style_transfer,
inputs=[content_image_input, style_image_input],
outputs="image",
title="Fast Neural Style Transfer",
description="Gradio demo for Fast Neural Style Transfer using a pretrained Image Stylization model from TensorFlow Hub. To use it, simply upload a content image and style image, or click one of the examples to load them. To learn more about the project, please find the references listed below.")
app_interface.launch()