arad1367's picture
Upload 2 files
b0e246d verified
import gradio as gr
import io
import pandas as pd
import matplotlib.pyplot as plt
from contextlib import redirect_stdout
from pejmanai_data_analysis.app import (
read_csv, data_description, data_preprocessing,
data_visualization, data_prediction, data_classification
)
# Function to capture printed output with error handling
def capture_output(func, *args, **kwargs):
f = io.StringIO()
try:
with redirect_stdout(f):
func(*args, **kwargs)
return f.getvalue()
except Exception as e:
return f"Error occurred: {str(e)}"
# Function to handle regression workflow with error handling
def regression_workflow(csv_file, x_column, y_column, target_column):
try:
# Capture data description output
data_desc = capture_output(data_description, csv_file.name)
# Step b) Data Preprocessing
df_preprocessed = data_preprocessing(csv_file.name)
# Step c) Data Visualization
if pd.api.types.is_numeric_dtype(df_preprocessed[x_column]) and pd.api.types.is_numeric_dtype(df_preprocessed[y_column]):
plt.figure(figsize=(16, 12))
data_visualization(csv_file.name, x_column, y_column)
visualization_output = plt.gcf()
else:
plt.figure()
plt.text(0.5, 0.5, 'Selected columns are not numeric.', fontsize=12, ha='center')
visualization_output = plt.gcf()
# Capture regression output
regression_output = capture_output(data_prediction, csv_file.name, target_column)
return data_desc, df_preprocessed, visualization_output, regression_output
except Exception as e:
return f"Error occurred during regression workflow: {str(e)}", None, None, None
# Function to handle classification workflow with error handling
def classification_workflow(csv_file, x_column, y_column, target_column):
try:
# Capture data description output
data_desc = capture_output(data_description, csv_file.name)
# Step b) Data Preprocessing
df_preprocessed = data_preprocessing(csv_file.name)
# Step c) Data Visualization
if pd.api.types.is_numeric_dtype(df_preprocessed[x_column]) and pd.api.types.is_numeric_dtype(df_preprocessed[y_column]):
plt.figure(figsize=(16, 12))
data_visualization(csv_file.name, x_column, y_column)
visualization_output = plt.gcf()
else:
plt.figure()
plt.text(0.5, 0.5, 'Selected columns are not numeric.', fontsize=12, ha='center')
visualization_output = plt.gcf()
# Capture classification output
classification_output = capture_output(data_classification, csv_file.name, target_column)
return data_desc, df_preprocessed, visualization_output, classification_output
except Exception as e:
return f"Error occurred during classification workflow: {str(e)}", None, None, None
# Main Gradio interface function with error handling
def gradio_interface(option, csv_file, x_column, y_column, target_column):
if option == "Regression Problem":
return regression_workflow(csv_file, x_column, y_column, target_column)
elif option == "Classification Problem":
return classification_workflow(csv_file, x_column, y_column, target_column)
# Reset function to clear outputs
def reset_all():
return "", None, None, ""
# Explanation text
explanation = """
### PejmanAI Data Analysis Tool
This app uses the `pejmanai_data_analysis` package, available on [PyPI](https://pypi.org/project/pejmanai-data-analysis/).
The GitHub repository for the project is available [here](https://github.com/arad1367/pejmanai_data_analysis_pypi_package).
**About the app:**
- In the visualization part, you must use two numerical columns. If you select string columns, you will not see any output.
- The target column is the dependent variable on which you want to make predictions.
- Due to the nature of the `pejmanai_data_analysis` package, the data description and model output are shown in a captured format (this will be addressed in the next version).
"""
# Footer HTML
footer = """
<div style="text-align: center; margin-top: 20px;">
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a>
<br>
Made with πŸ’– by Pejman Ebrahimi
</div>
"""
# Set up the Gradio interface with UI adjustments
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as interface:
gr.Markdown(explanation)
with gr.Row():
problem_type = gr.Radio(["Regression Problem", "Classification Problem"], label="Select Problem Type")
with gr.Row():
csv_file = gr.File(label="Upload CSV File")
with gr.Row():
x_column = gr.Textbox(label="Enter X Column for Visualization")
with gr.Row():
y_column = gr.Textbox(label="Enter Y Column for Visualization")
with gr.Row():
target_column = gr.Textbox(label="Enter Target Column for Model Training")
with gr.Row():
submit_button = gr.Button("Run Analysis")
with gr.Row():
data_desc_output = gr.Textbox(label="Data Description", lines=20, placeholder="Data Description Output")
with gr.Row():
df_preprocessed_output = gr.Dataframe(label="Data Preprocessing Output")
with gr.Row():
visualization_output = gr.Plot(label="Data Visualization Output")
with gr.Row():
model_output = gr.Textbox(label="Model Output", lines=20, placeholder="Model Output")
with gr.Row():
reset_button = gr.Button("Reset Outputs")
reset_button.click(
fn=reset_all,
inputs=[],
outputs=[data_desc_output, df_preprocessed_output, visualization_output, model_output]
)
submit_button.click(
fn=gradio_interface,
inputs=[problem_type, csv_file, x_column, y_column, target_column],
outputs=[data_desc_output, df_preprocessed_output, visualization_output, model_output]
)
gr.HTML(footer)
# Launch the Gradio interface
interface.launch()