|
import gradio as gr
|
|
import io
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from contextlib import redirect_stdout
|
|
from pejmanai_data_analysis.app import (
|
|
read_csv, data_description, data_preprocessing,
|
|
data_visualization, data_prediction, data_classification
|
|
)
|
|
|
|
|
|
def capture_output(func, *args, **kwargs):
|
|
f = io.StringIO()
|
|
try:
|
|
with redirect_stdout(f):
|
|
func(*args, **kwargs)
|
|
return f.getvalue()
|
|
except Exception as e:
|
|
return f"Error occurred: {str(e)}"
|
|
|
|
|
|
def regression_workflow(csv_file, x_column, y_column, target_column):
|
|
try:
|
|
|
|
data_desc = capture_output(data_description, csv_file.name)
|
|
|
|
|
|
df_preprocessed = data_preprocessing(csv_file.name)
|
|
|
|
|
|
if pd.api.types.is_numeric_dtype(df_preprocessed[x_column]) and pd.api.types.is_numeric_dtype(df_preprocessed[y_column]):
|
|
plt.figure(figsize=(16, 12))
|
|
data_visualization(csv_file.name, x_column, y_column)
|
|
visualization_output = plt.gcf()
|
|
else:
|
|
plt.figure()
|
|
plt.text(0.5, 0.5, 'Selected columns are not numeric.', fontsize=12, ha='center')
|
|
visualization_output = plt.gcf()
|
|
|
|
|
|
regression_output = capture_output(data_prediction, csv_file.name, target_column)
|
|
|
|
return data_desc, df_preprocessed, visualization_output, regression_output
|
|
except Exception as e:
|
|
return f"Error occurred during regression workflow: {str(e)}", None, None, None
|
|
|
|
|
|
def classification_workflow(csv_file, x_column, y_column, target_column):
|
|
try:
|
|
|
|
data_desc = capture_output(data_description, csv_file.name)
|
|
|
|
|
|
df_preprocessed = data_preprocessing(csv_file.name)
|
|
|
|
|
|
if pd.api.types.is_numeric_dtype(df_preprocessed[x_column]) and pd.api.types.is_numeric_dtype(df_preprocessed[y_column]):
|
|
plt.figure(figsize=(16, 12))
|
|
data_visualization(csv_file.name, x_column, y_column)
|
|
visualization_output = plt.gcf()
|
|
else:
|
|
plt.figure()
|
|
plt.text(0.5, 0.5, 'Selected columns are not numeric.', fontsize=12, ha='center')
|
|
visualization_output = plt.gcf()
|
|
|
|
|
|
classification_output = capture_output(data_classification, csv_file.name, target_column)
|
|
|
|
return data_desc, df_preprocessed, visualization_output, classification_output
|
|
except Exception as e:
|
|
return f"Error occurred during classification workflow: {str(e)}", None, None, None
|
|
|
|
|
|
def gradio_interface(option, csv_file, x_column, y_column, target_column):
|
|
if option == "Regression Problem":
|
|
return regression_workflow(csv_file, x_column, y_column, target_column)
|
|
elif option == "Classification Problem":
|
|
return classification_workflow(csv_file, x_column, y_column, target_column)
|
|
|
|
|
|
def reset_all():
|
|
return "", None, None, ""
|
|
|
|
|
|
explanation = """
|
|
### PejmanAI Data Analysis Tool
|
|
|
|
This app uses the `pejmanai_data_analysis` package, available on [PyPI](https://pypi.org/project/pejmanai-data-analysis/).
|
|
The GitHub repository for the project is available [here](https://github.com/arad1367/pejmanai_data_analysis_pypi_package).
|
|
|
|
**About the app:**
|
|
- In the visualization part, you must use two numerical columns. If you select string columns, you will not see any output.
|
|
- The target column is the dependent variable on which you want to make predictions.
|
|
- Due to the nature of the `pejmanai_data_analysis` package, the data description and model output are shown in a captured format (this will be addressed in the next version).
|
|
"""
|
|
|
|
|
|
footer = """
|
|
<div style="text-align: center; margin-top: 20px;">
|
|
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
|
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
|
|
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a>
|
|
<br>
|
|
Made with π by Pejman Ebrahimi
|
|
</div>
|
|
"""
|
|
|
|
|
|
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as interface:
|
|
gr.Markdown(explanation)
|
|
|
|
with gr.Row():
|
|
problem_type = gr.Radio(["Regression Problem", "Classification Problem"], label="Select Problem Type")
|
|
with gr.Row():
|
|
csv_file = gr.File(label="Upload CSV File")
|
|
with gr.Row():
|
|
x_column = gr.Textbox(label="Enter X Column for Visualization")
|
|
with gr.Row():
|
|
y_column = gr.Textbox(label="Enter Y Column for Visualization")
|
|
with gr.Row():
|
|
target_column = gr.Textbox(label="Enter Target Column for Model Training")
|
|
|
|
with gr.Row():
|
|
submit_button = gr.Button("Run Analysis")
|
|
|
|
with gr.Row():
|
|
data_desc_output = gr.Textbox(label="Data Description", lines=20, placeholder="Data Description Output")
|
|
with gr.Row():
|
|
df_preprocessed_output = gr.Dataframe(label="Data Preprocessing Output")
|
|
with gr.Row():
|
|
visualization_output = gr.Plot(label="Data Visualization Output")
|
|
with gr.Row():
|
|
model_output = gr.Textbox(label="Model Output", lines=20, placeholder="Model Output")
|
|
|
|
with gr.Row():
|
|
reset_button = gr.Button("Reset Outputs")
|
|
|
|
reset_button.click(
|
|
fn=reset_all,
|
|
inputs=[],
|
|
outputs=[data_desc_output, df_preprocessed_output, visualization_output, model_output]
|
|
)
|
|
|
|
submit_button.click(
|
|
fn=gradio_interface,
|
|
inputs=[problem_type, csv_file, x_column, y_column, target_column],
|
|
outputs=[data_desc_output, df_preprocessed_output, visualization_output, model_output]
|
|
)
|
|
|
|
gr.HTML(footer)
|
|
|
|
|
|
interface.launch()
|
|
|