Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoModel, AutoTokenizer
|
5 |
+
|
6 |
+
# Load the model and tokenizer
|
7 |
+
model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16)
|
8 |
+
model = model.to(device='cuda')
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True)
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
# Define a function to generate a response
|
13 |
+
def generate_response(image, question):
|
14 |
+
msgs = [{'role': 'user', 'content': question}]
|
15 |
+
res = model.chat(
|
16 |
+
image=image,
|
17 |
+
msgs=msgs,
|
18 |
+
tokenizer=tokenizer,
|
19 |
+
sampling=True,
|
20 |
+
temperature=0.7,
|
21 |
+
stream=True
|
22 |
+
)
|
23 |
+
generated_text = ""
|
24 |
+
for new_text in res:
|
25 |
+
generated_text += new_text
|
26 |
+
return generated_text
|
27 |
+
|
28 |
+
|
29 |
+
# Create a Gradio interface
|
30 |
+
iface = gr.Interface(
|
31 |
+
fn=generate_response,
|
32 |
+
inputs=[gr.Image(type="pil"), "text"],
|
33 |
+
outputs="text",
|
34 |
+
title="Visual Question Answering",
|
35 |
+
description="Input an image and a question related to the image to receive a response.",
|
36 |
+
)
|
37 |
+
|
38 |
+
# Launch the app
|
39 |
+
iface.launch(debug=True)
|