Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,277 +1,277 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
import torch
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig, AutoProcessor
|
5 |
-
import gradio as gr
|
6 |
-
from threading import Thread
|
7 |
-
from PIL import Image
|
8 |
-
import subprocess
|
9 |
-
import spaces
|
10 |
-
|
11 |
-
# Install flash-attn if not already installed
|
12 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
13 |
-
|
14 |
-
# Model and tokenizer for the chatbot
|
15 |
-
MODEL_ID1 = "microsoft/Phi-3.5-mini-instruct"
|
16 |
-
MODEL_LIST1 = ["microsoft/Phi-3.5-mini-instruct"]
|
17 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
18 |
-
|
19 |
-
device = "cuda" # for GPU usage or "cpu" for CPU usage / But you need GPU :)
|
20 |
-
|
21 |
-
quantization_config = BitsAndBytesConfig(
|
22 |
-
load_in_4bit=True,
|
23 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
24 |
-
bnb_4bit_use_double_quant=True,
|
25 |
-
bnb_4bit_quant_type="nf4")
|
26 |
-
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID1)
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(
|
29 |
-
MODEL_ID1,
|
30 |
-
torch_dtype=torch.bfloat16,
|
31 |
-
device_map="auto",
|
32 |
-
quantization_config=quantization_config)
|
33 |
-
|
34 |
-
# Chatbot tab function
|
35 |
-
@spaces.GPU()
|
36 |
-
def stream_chat(
|
37 |
-
message: str,
|
38 |
-
history: list,
|
39 |
-
system_prompt: str,
|
40 |
-
temperature: float = 0.8,
|
41 |
-
max_new_tokens: int = 1024,
|
42 |
-
top_p: float = 1.0,
|
43 |
-
top_k: int = 20,
|
44 |
-
penalty: float = 1.2,
|
45 |
-
):
|
46 |
-
print(f'message: {message}')
|
47 |
-
print(f'history: {history}')
|
48 |
-
|
49 |
-
conversation = [
|
50 |
-
{"role": "system", "content": system_prompt}
|
51 |
-
]
|
52 |
-
for prompt, answer in history:
|
53 |
-
conversation.extend([
|
54 |
-
{"role": "user", "content": prompt},
|
55 |
-
{"role": "assistant", "content": answer},
|
56 |
-
])
|
57 |
-
|
58 |
-
conversation.append({"role": "user", "content": message})
|
59 |
-
|
60 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
61 |
-
|
62 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
63 |
-
|
64 |
-
generate_kwargs = dict(
|
65 |
-
input_ids=input_ids,
|
66 |
-
max_new_tokens = max_new_tokens,
|
67 |
-
do_sample = False if temperature == 0 else True,
|
68 |
-
top_p = top_p,
|
69 |
-
top_k = top_k,
|
70 |
-
temperature = temperature,
|
71 |
-
eos_token_id=[128001,128008,128009],
|
72 |
-
streamer=streamer,
|
73 |
-
)
|
74 |
-
|
75 |
-
with torch.no_grad():
|
76 |
-
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
77 |
-
thread.start()
|
78 |
-
|
79 |
-
buffer = ""
|
80 |
-
for new_text in streamer:
|
81 |
-
buffer += new_text
|
82 |
-
yield buffer
|
83 |
-
|
84 |
-
# Vision model setup
|
85 |
-
models = {
|
86 |
-
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
87 |
-
}
|
88 |
-
|
89 |
-
processors = {
|
90 |
-
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
91 |
-
}
|
92 |
-
|
93 |
-
user_prompt = '\n'
|
94 |
-
assistant_prompt = '\n'
|
95 |
-
prompt_suffix = "\n"
|
96 |
-
|
97 |
-
# Vision model tab function
|
98 |
-
@spaces.GPU()
|
99 |
-
def stream_vision(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
|
100 |
-
model = models[model_id]
|
101 |
-
processor = processors[model_id]
|
102 |
-
|
103 |
-
# Prepare the image list and corresponding tags
|
104 |
-
images = [Image.fromarray(image).convert("RGB")]
|
105 |
-
placeholder = "<|image_1|>\n" # Using the image tag as per the example
|
106 |
-
|
107 |
-
# Construct the prompt with the image tag and the user's text input
|
108 |
-
if text_input:
|
109 |
-
prompt_content = placeholder + text_input
|
110 |
-
else:
|
111 |
-
prompt_content = placeholder
|
112 |
-
|
113 |
-
messages = [
|
114 |
-
{"role": "user", "content": prompt_content},
|
115 |
-
]
|
116 |
-
|
117 |
-
# Apply the chat template to the messages
|
118 |
-
prompt = processor.tokenizer.apply_chat_template(
|
119 |
-
messages,
|
120 |
-
tokenize=False,
|
121 |
-
add_generation_prompt=True
|
122 |
-
)
|
123 |
-
|
124 |
-
# Process the inputs with the processor
|
125 |
-
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0")
|
126 |
-
|
127 |
-
# Generation parameters
|
128 |
-
generation_args = {
|
129 |
-
"max_new_tokens": 1000,
|
130 |
-
"temperature": 0.0,
|
131 |
-
"do_sample": False,
|
132 |
-
}
|
133 |
-
|
134 |
-
# Generate the response
|
135 |
-
generate_ids = model.generate(
|
136 |
-
**inputs,
|
137 |
-
eos_token_id=processor.tokenizer.eos_token_id,
|
138 |
-
**generation_args
|
139 |
-
)
|
140 |
-
|
141 |
-
# Remove input tokens from the generated response
|
142 |
-
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
143 |
-
|
144 |
-
# Decode the generated output
|
145 |
-
response = processor.batch_decode(
|
146 |
-
generate_ids,
|
147 |
-
skip_special_tokens=True,
|
148 |
-
clean_up_tokenization_spaces=False
|
149 |
-
)[0]
|
150 |
-
|
151 |
-
return response
|
152 |
-
|
153 |
-
# CSS for the interface
|
154 |
-
CSS = """
|
155 |
-
.duplicate-button {
|
156 |
-
margin: auto !important;
|
157 |
-
color: white !important;
|
158 |
-
background: black !important;
|
159 |
-
border-radius: 100vh !important;
|
160 |
-
}
|
161 |
-
h3 {
|
162 |
-
text-align: center;
|
163 |
-
}
|
164 |
-
"""
|
165 |
-
|
166 |
-
PLACEHOLDER = """
|
167 |
-
<center>
|
168 |
-
<p>Hi! I'm your assistant. Feel free to ask your questions</p>
|
169 |
-
</center>
|
170 |
-
"""
|
171 |
-
|
172 |
-
TITLE = "<h1><center>Phi-3.5 Chatbot & Phi-3.5 Vision</center></h1>"
|
173 |
-
|
174 |
-
EXPLANATION = """
|
175 |
-
<div style="text-align: center; margin-top: 20px;">
|
176 |
-
<p>This app supports both the microsoft/Phi-3.5-mini-instruct model for chat bot and the microsoft/Phi-3.5-vision-instruct model for multimodal model.</p>
|
177 |
-
<p>Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model built upon datasets which include - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data both on text and vision. The model belongs to the Phi-3 model family, and the multimodal version comes with 128K context length (in tokens) it can support. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures.</p>
|
178 |
-
<p>Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.</p>
|
179 |
-
</div>
|
180 |
-
"""
|
181 |
-
|
182 |
-
footer = """
|
183 |
-
<div style="text-align: center; margin-top: 20px;">
|
184 |
-
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
185 |
-
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
|
186 |
-
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
|
187 |
-
<a href="https://huggingface.co/microsoft/Phi-3.5-mini-instruct" target="_blank">microsoft/Phi-3.5-mini-instruct</a> |
|
188 |
-
<a href="https://huggingface.co/microsoft/Phi-3.5-vision-instruct" target="_blank">microsoft/Phi-3.5-vision-instruct</a>
|
189 |
-
<br>
|
190 |
-
Made with π by Pejman Ebrahimi
|
191 |
-
</div>
|
192 |
-
"""
|
193 |
-
|
194 |
-
# Gradio app with two tabs
|
195 |
-
with gr.Blocks(css=CSS, theme="small_and_pretty") as demo:
|
196 |
-
gr.HTML(TITLE)
|
197 |
-
gr.HTML(EXPLANATION)
|
198 |
-
with gr.Tab("Chatbot"):
|
199 |
-
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
200 |
-
gr.ChatInterface(
|
201 |
-
fn=stream_chat,
|
202 |
-
chatbot=chatbot,
|
203 |
-
fill_height=True,
|
204 |
-
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
|
205 |
-
additional_inputs=[
|
206 |
-
gr.Textbox(
|
207 |
-
value="You are a helpful assistant",
|
208 |
-
label="System Prompt",
|
209 |
-
render=False,
|
210 |
-
),
|
211 |
-
gr.Slider(
|
212 |
-
minimum=0,
|
213 |
-
maximum=1,
|
214 |
-
step=0.1,
|
215 |
-
value=0.8,
|
216 |
-
label="Temperature",
|
217 |
-
render=False,
|
218 |
-
),
|
219 |
-
gr.Slider(
|
220 |
-
minimum=128,
|
221 |
-
maximum=8192,
|
222 |
-
step=1,
|
223 |
-
value=1024,
|
224 |
-
label="Max new tokens",
|
225 |
-
render=False,
|
226 |
-
),
|
227 |
-
gr.Slider(
|
228 |
-
minimum=0.0,
|
229 |
-
maximum=1.0,
|
230 |
-
step=0.1,
|
231 |
-
value=1.0,
|
232 |
-
label="top_p",
|
233 |
-
render=False,
|
234 |
-
),
|
235 |
-
gr.Slider(
|
236 |
-
minimum=1,
|
237 |
-
maximum=20,
|
238 |
-
step=1,
|
239 |
-
value=20,
|
240 |
-
label="top_k",
|
241 |
-
render=False,
|
242 |
-
),
|
243 |
-
gr.Slider(
|
244 |
-
minimum=0.0,
|
245 |
-
maximum=2.0,
|
246 |
-
step=0.1,
|
247 |
-
value=1.2,
|
248 |
-
label="Repetition penalty",
|
249 |
-
render=False,
|
250 |
-
),
|
251 |
-
],
|
252 |
-
examples=[
|
253 |
-
["How to make a self-driving car?"],
|
254 |
-
["Give me a creative idea to establish a startup"],
|
255 |
-
["How can I improve my programming skills?"],
|
256 |
-
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
|
257 |
-
],
|
258 |
-
cache_examples=False,
|
259 |
-
)
|
260 |
-
with gr.Tab("Vision"):
|
261 |
-
with gr.Row():
|
262 |
-
input_img = gr.Image(label="Input Picture")
|
263 |
-
with gr.Row():
|
264 |
-
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
|
265 |
-
with gr.Row():
|
266 |
-
text_input = gr.Textbox(label="Question")
|
267 |
-
with gr.Row():
|
268 |
-
submit_btn = gr.Button(value="Submit")
|
269 |
-
with gr.Row():
|
270 |
-
output_text = gr.Textbox(label="Output Text")
|
271 |
-
|
272 |
-
submit_btn.click(stream_vision, [input_img, text_input, model_selector], [output_text])
|
273 |
-
|
274 |
-
gr.HTML(footer)
|
275 |
-
|
276 |
-
# Launch the combined app
|
277 |
demo.launch(debug=True)
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig, AutoProcessor
|
5 |
+
import gradio as gr
|
6 |
+
from threading import Thread
|
7 |
+
from PIL import Image
|
8 |
+
import subprocess
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
# Install flash-attn if not already installed
|
12 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
13 |
+
|
14 |
+
# Model and tokenizer for the chatbot
|
15 |
+
MODEL_ID1 = "microsoft/Phi-3.5-mini-instruct"
|
16 |
+
MODEL_LIST1 = ["microsoft/Phi-3.5-mini-instruct"]
|
17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
18 |
+
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage / But you need GPU :)
|
20 |
+
|
21 |
+
quantization_config = BitsAndBytesConfig(
|
22 |
+
load_in_4bit=True,
|
23 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
24 |
+
bnb_4bit_use_double_quant=True,
|
25 |
+
bnb_4bit_quant_type="nf4")
|
26 |
+
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID1)
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
MODEL_ID1,
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
+
device_map="auto",
|
32 |
+
quantization_config=quantization_config)
|
33 |
+
|
34 |
+
# Chatbot tab function
|
35 |
+
@spaces.GPU()
|
36 |
+
def stream_chat(
|
37 |
+
message: str,
|
38 |
+
history: list,
|
39 |
+
system_prompt: str,
|
40 |
+
temperature: float = 0.8,
|
41 |
+
max_new_tokens: int = 1024,
|
42 |
+
top_p: float = 1.0,
|
43 |
+
top_k: int = 20,
|
44 |
+
penalty: float = 1.2,
|
45 |
+
):
|
46 |
+
print(f'message: {message}')
|
47 |
+
print(f'history: {history}')
|
48 |
+
|
49 |
+
conversation = [
|
50 |
+
{"role": "system", "content": system_prompt}
|
51 |
+
]
|
52 |
+
for prompt, answer in history:
|
53 |
+
conversation.extend([
|
54 |
+
{"role": "user", "content": prompt},
|
55 |
+
{"role": "assistant", "content": answer},
|
56 |
+
])
|
57 |
+
|
58 |
+
conversation.append({"role": "user", "content": message})
|
59 |
+
|
60 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
61 |
+
|
62 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
63 |
+
|
64 |
+
generate_kwargs = dict(
|
65 |
+
input_ids=input_ids,
|
66 |
+
max_new_tokens = max_new_tokens,
|
67 |
+
do_sample = False if temperature == 0 else True,
|
68 |
+
top_p = top_p,
|
69 |
+
top_k = top_k,
|
70 |
+
temperature = temperature,
|
71 |
+
eos_token_id=[128001,128008,128009],
|
72 |
+
streamer=streamer,
|
73 |
+
)
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
77 |
+
thread.start()
|
78 |
+
|
79 |
+
buffer = ""
|
80 |
+
for new_text in streamer:
|
81 |
+
buffer += new_text
|
82 |
+
yield buffer
|
83 |
+
|
84 |
+
# Vision model setup
|
85 |
+
models = {
|
86 |
+
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
87 |
+
}
|
88 |
+
|
89 |
+
processors = {
|
90 |
+
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
91 |
+
}
|
92 |
+
|
93 |
+
user_prompt = '\n'
|
94 |
+
assistant_prompt = '\n'
|
95 |
+
prompt_suffix = "\n"
|
96 |
+
|
97 |
+
# Vision model tab function
|
98 |
+
@spaces.GPU()
|
99 |
+
def stream_vision(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
|
100 |
+
model = models[model_id]
|
101 |
+
processor = processors[model_id]
|
102 |
+
|
103 |
+
# Prepare the image list and corresponding tags
|
104 |
+
images = [Image.fromarray(image).convert("RGB")]
|
105 |
+
placeholder = "<|image_1|>\n" # Using the image tag as per the example
|
106 |
+
|
107 |
+
# Construct the prompt with the image tag and the user's text input
|
108 |
+
if text_input:
|
109 |
+
prompt_content = placeholder + text_input
|
110 |
+
else:
|
111 |
+
prompt_content = placeholder
|
112 |
+
|
113 |
+
messages = [
|
114 |
+
{"role": "user", "content": prompt_content},
|
115 |
+
]
|
116 |
+
|
117 |
+
# Apply the chat template to the messages
|
118 |
+
prompt = processor.tokenizer.apply_chat_template(
|
119 |
+
messages,
|
120 |
+
tokenize=False,
|
121 |
+
add_generation_prompt=True
|
122 |
+
)
|
123 |
+
|
124 |
+
# Process the inputs with the processor
|
125 |
+
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0")
|
126 |
+
|
127 |
+
# Generation parameters
|
128 |
+
generation_args = {
|
129 |
+
"max_new_tokens": 1000,
|
130 |
+
"temperature": 0.0,
|
131 |
+
"do_sample": False,
|
132 |
+
}
|
133 |
+
|
134 |
+
# Generate the response
|
135 |
+
generate_ids = model.generate(
|
136 |
+
**inputs,
|
137 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
138 |
+
**generation_args
|
139 |
+
)
|
140 |
+
|
141 |
+
# Remove input tokens from the generated response
|
142 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
143 |
+
|
144 |
+
# Decode the generated output
|
145 |
+
response = processor.batch_decode(
|
146 |
+
generate_ids,
|
147 |
+
skip_special_tokens=True,
|
148 |
+
clean_up_tokenization_spaces=False
|
149 |
+
)[0]
|
150 |
+
|
151 |
+
return response
|
152 |
+
|
153 |
+
# CSS for the interface
|
154 |
+
CSS = """
|
155 |
+
.duplicate-button {
|
156 |
+
margin: auto !important;
|
157 |
+
color: white !important;
|
158 |
+
background: black !important;
|
159 |
+
border-radius: 100vh !important;
|
160 |
+
}
|
161 |
+
h3 {
|
162 |
+
text-align: center;
|
163 |
+
}
|
164 |
+
"""
|
165 |
+
|
166 |
+
PLACEHOLDER = """
|
167 |
+
<center>
|
168 |
+
<p>Hi! I'm your assistant. Feel free to ask your questions</p>
|
169 |
+
</center>
|
170 |
+
"""
|
171 |
+
|
172 |
+
TITLE = "<h1><center>Phi-3.5 Chatbot & Phi-3.5 Vision</center></h1>"
|
173 |
+
|
174 |
+
EXPLANATION = """
|
175 |
+
<div style="text-align: center; margin-top: 20px;">
|
176 |
+
<p>This app supports both the microsoft/Phi-3.5-mini-instruct model for chat bot and the microsoft/Phi-3.5-vision-instruct model for multimodal model.</p>
|
177 |
+
<p>Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model built upon datasets which include - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data both on text and vision. The model belongs to the Phi-3 model family, and the multimodal version comes with 128K context length (in tokens) it can support. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures.</p>
|
178 |
+
<p>Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.</p>
|
179 |
+
</div>
|
180 |
+
"""
|
181 |
+
|
182 |
+
footer = """
|
183 |
+
<div style="text-align: center; margin-top: 20px;">
|
184 |
+
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
185 |
+
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
|
186 |
+
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
|
187 |
+
<a href="https://huggingface.co/microsoft/Phi-3.5-mini-instruct" target="_blank">microsoft/Phi-3.5-mini-instruct</a> |
|
188 |
+
<a href="https://huggingface.co/microsoft/Phi-3.5-vision-instruct" target="_blank">microsoft/Phi-3.5-vision-instruct</a>
|
189 |
+
<br>
|
190 |
+
Made with π by Pejman Ebrahimi
|
191 |
+
</div>
|
192 |
+
"""
|
193 |
+
|
194 |
+
# Gradio app with two tabs
|
195 |
+
with gr.Blocks(css=CSS, theme="small_and_pretty") as demo:
|
196 |
+
gr.HTML(TITLE)
|
197 |
+
gr.HTML(EXPLANATION)
|
198 |
+
with gr.Tab("Chatbot"):
|
199 |
+
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
200 |
+
gr.ChatInterface(
|
201 |
+
fn=stream_chat,
|
202 |
+
chatbot=chatbot,
|
203 |
+
fill_height=True,
|
204 |
+
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
|
205 |
+
additional_inputs=[
|
206 |
+
gr.Textbox(
|
207 |
+
value="You are a helpful assistant",
|
208 |
+
label="System Prompt",
|
209 |
+
render=False,
|
210 |
+
),
|
211 |
+
gr.Slider(
|
212 |
+
minimum=0,
|
213 |
+
maximum=1,
|
214 |
+
step=0.1,
|
215 |
+
value=0.8,
|
216 |
+
label="Temperature",
|
217 |
+
render=False,
|
218 |
+
),
|
219 |
+
gr.Slider(
|
220 |
+
minimum=128,
|
221 |
+
maximum=8192,
|
222 |
+
step=1,
|
223 |
+
value=1024,
|
224 |
+
label="Max new tokens",
|
225 |
+
render=False,
|
226 |
+
),
|
227 |
+
gr.Slider(
|
228 |
+
minimum=0.0,
|
229 |
+
maximum=1.0,
|
230 |
+
step=0.1,
|
231 |
+
value=1.0,
|
232 |
+
label="top_p",
|
233 |
+
render=False,
|
234 |
+
),
|
235 |
+
gr.Slider(
|
236 |
+
minimum=1,
|
237 |
+
maximum=20,
|
238 |
+
step=1,
|
239 |
+
value=20,
|
240 |
+
label="top_k",
|
241 |
+
render=False,
|
242 |
+
),
|
243 |
+
gr.Slider(
|
244 |
+
minimum=0.0,
|
245 |
+
maximum=2.0,
|
246 |
+
step=0.1,
|
247 |
+
value=1.2,
|
248 |
+
label="Repetition penalty",
|
249 |
+
render=False,
|
250 |
+
),
|
251 |
+
],
|
252 |
+
examples=[
|
253 |
+
["How to make a self-driving car?"],
|
254 |
+
["Give me a creative idea to establish a startup"],
|
255 |
+
["How can I improve my programming skills?"],
|
256 |
+
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
|
257 |
+
],
|
258 |
+
cache_examples=False,
|
259 |
+
)
|
260 |
+
with gr.Tab("Vision"):
|
261 |
+
with gr.Row():
|
262 |
+
input_img = gr.Image(label="Input Picture")
|
263 |
+
with gr.Row():
|
264 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
|
265 |
+
with gr.Row():
|
266 |
+
text_input = gr.Textbox(label="Question")
|
267 |
+
with gr.Row():
|
268 |
+
submit_btn = gr.Button(value="Submit")
|
269 |
+
with gr.Row():
|
270 |
+
output_text = gr.Textbox(label="Output Text")
|
271 |
+
|
272 |
+
submit_btn.click(stream_vision, [input_img, text_input, model_selector], [output_text])
|
273 |
+
|
274 |
+
gr.HTML(footer)
|
275 |
+
|
276 |
+
# Launch the combined app
|
277 |
demo.launch(debug=True)
|