Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,90 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
from pdf2image import convert_from_path
|
4 |
-
from byaldi import RAGMultiModalModel
|
5 |
-
from transformers import Qwen2VLForConditionalGeneration,
|
6 |
-
from qwen_vl_utils import process_vision_info
|
7 |
-
import torch
|
8 |
-
import subprocess
|
9 |
-
|
10 |
-
# Install flash-attn if not already installed
|
11 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
inputs=[pdf_input, query_input],
|
92 |
-
outputs=[output_text, output_images],
|
93 |
-
title="Multimodal RAG with Image Query - By Pejman Ebrahimi"
|
94 |
-
).launch()
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from pdf2image import convert_from_path
|
4 |
+
from byaldi import RAGMultiModalModel
|
5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
+
from qwen_vl_utils import process_vision_info
|
7 |
+
import torch
|
8 |
+
import subprocess
|
9 |
+
|
10 |
+
# Install flash-attn if not already installed
|
11 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
+
|
13 |
+
# Load the RAG Model and the Qwen2-VL-2B-Instruct model
|
14 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
15 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
|
16 |
+
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
|
17 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
18 |
+
|
19 |
+
@spaces.GPU()
|
20 |
+
def process_pdf_and_query(pdf_file, user_query):
|
21 |
+
# Convert the PDF to images
|
22 |
+
images = convert_from_path(pdf_file.name) # pdf_file.name gives the file path
|
23 |
+
num_images = len(images)
|
24 |
+
|
25 |
+
# Indexing the PDF in RAG
|
26 |
+
RAG.index(
|
27 |
+
input_path=pdf_file.name,
|
28 |
+
index_name="image_index", # index will be saved at index_root/index_name/
|
29 |
+
store_collection_with_index=False,
|
30 |
+
overwrite=True
|
31 |
+
)
|
32 |
+
|
33 |
+
# Search the query in the RAG model
|
34 |
+
results = RAG.search(user_query, k=1)
|
35 |
+
if not results:
|
36 |
+
return "No results found.", num_images
|
37 |
+
|
38 |
+
# Retrieve the page number and process image
|
39 |
+
image_index = results[0]["page_num"] - 1
|
40 |
+
messages = [
|
41 |
+
{
|
42 |
+
"role": "user",
|
43 |
+
"content": [
|
44 |
+
{
|
45 |
+
"type": "image",
|
46 |
+
"image": images[image_index],
|
47 |
+
},
|
48 |
+
{"type": "text", "text": user_query},
|
49 |
+
],
|
50 |
+
}
|
51 |
+
]
|
52 |
+
|
53 |
+
# Generate text with the Qwen model
|
54 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
55 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
56 |
+
inputs = processor(
|
57 |
+
text=[text],
|
58 |
+
images=image_inputs,
|
59 |
+
videos=video_inputs,
|
60 |
+
padding=True,
|
61 |
+
return_tensors="pt",
|
62 |
+
)
|
63 |
+
inputs = inputs.to("cuda")
|
64 |
+
|
65 |
+
# Generate the output response
|
66 |
+
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
67 |
+
generated_ids_trimmed = [
|
68 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
69 |
+
]
|
70 |
+
output_text = processor.batch_decode(
|
71 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
72 |
+
)
|
73 |
+
|
74 |
+
return output_text[0], num_images
|
75 |
+
|
76 |
+
# Define the Gradio Interface
|
77 |
+
pdf_input = gr.File(label="Upload PDF") # Single PDF file input
|
78 |
+
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF") # User query input
|
79 |
+
output_text = gr.Textbox(label="Model Answer") # Output for the model's answer
|
80 |
+
output_images = gr.Textbox(label="Number of Images in PDF") # Output for number of images
|
81 |
+
|
82 |
+
# Launch the Gradio app
|
83 |
+
demo = gr.Interface(
|
84 |
+
fn=process_pdf_and_query,
|
85 |
+
inputs=[pdf_input, query_input], # List of inputs
|
86 |
+
outputs=[output_text, output_images], # List of outputs
|
87 |
+
title="Multimodal RAG with Image Query - By Pejman Ebrahimi"
|
88 |
+
)
|
89 |
+
|
90 |
+
demo.launch(debug=True) # Start the interface
|
|
|
|
|
|
|
|