co
Browse files- normflows.py +354 -0
- requirements.txt +63 -0
normflows.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import torch
|
| 3 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau,OneCycleLR,CyclicLR
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from sklearn.preprocessing import StandardScaler,MinMaxScaler
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from torch.distributions import MultivariateNormal, LogNormal,Normal, Chi2
|
| 8 |
+
from torch.distributions.distribution import Distribution
|
| 9 |
+
from sklearn.metrics import r2_score
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# It's a distribution that is a kernel density estimate of a Gaussian distribution
|
| 14 |
+
class GaussianKDE(Distribution):
|
| 15 |
+
def __init__(self, X, bw):
|
| 16 |
+
"""
|
| 17 |
+
X : tensor (n, d)
|
| 18 |
+
`n` points with `d` dimensions to which KDE will be fit
|
| 19 |
+
bw : numeric
|
| 20 |
+
bandwidth for Gaussian kernel
|
| 21 |
+
"""
|
| 22 |
+
self.X = X
|
| 23 |
+
self.bw = bw
|
| 24 |
+
self.dims = X.shape[-1]
|
| 25 |
+
self.n = X.shape[0]
|
| 26 |
+
self.mvn = MultivariateNormal(loc=torch.zeros(self.dims),
|
| 27 |
+
scale_tril=torch.eye(self.dims))
|
| 28 |
+
|
| 29 |
+
def sample(self, num_samples):
|
| 30 |
+
"""
|
| 31 |
+
We are sampling from a normal distribution with mean equal to the data points in the dataset and
|
| 32 |
+
standard deviation equal to the bandwidth
|
| 33 |
+
|
| 34 |
+
:param num_samples: the number of samples to draw from the KDE
|
| 35 |
+
:return: A sample of size num_samples from the KDE.
|
| 36 |
+
"""
|
| 37 |
+
idxs = (np.random.uniform(0, 1, num_samples) * self.n).astype(int)
|
| 38 |
+
norm = Normal(loc=self.X[idxs], scale=self.bw)
|
| 39 |
+
return norm.sample()
|
| 40 |
+
|
| 41 |
+
def score_samples(self, Y, X=None):
|
| 42 |
+
"""Returns the kernel density estimates of each point in `Y`.
|
| 43 |
+
|
| 44 |
+
Parameters
|
| 45 |
+
----------
|
| 46 |
+
Y : tensor (m, d)
|
| 47 |
+
`m` points with `d` dimensions for which the probability density will
|
| 48 |
+
be calculated
|
| 49 |
+
X : tensor (n, d), optional
|
| 50 |
+
`n` points with `d` dimensions to which KDE will be fit. Provided to
|
| 51 |
+
allow batch calculations in `log_prob`. By default, `X` is None and
|
| 52 |
+
all points used to initialize KernelDensityEstimator are included.
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
Returns
|
| 56 |
+
-------
|
| 57 |
+
log_probs : tensor (m)
|
| 58 |
+
log probability densities for each of the queried points in `Y`
|
| 59 |
+
"""
|
| 60 |
+
if X == None:
|
| 61 |
+
X = self.X
|
| 62 |
+
log_probs = self.mvn.log_prob((X.unsqueeze(1) - Y)).sum(dim=0)
|
| 63 |
+
|
| 64 |
+
return log_probs
|
| 65 |
+
|
| 66 |
+
def log_prob(self, Y):
|
| 67 |
+
"""Returns the total log probability of one or more points, `Y`, using
|
| 68 |
+
a Multivariate Normal kernel fit to `X` and scaled using `bw`.
|
| 69 |
+
|
| 70 |
+
Parameters
|
| 71 |
+
----------
|
| 72 |
+
Y : tensor (m, d)
|
| 73 |
+
`m` points with `d` dimensions for which the probability density will
|
| 74 |
+
be calculated
|
| 75 |
+
|
| 76 |
+
Returns
|
| 77 |
+
-------
|
| 78 |
+
log_prob : numeric
|
| 79 |
+
total log probability density for the queried points, `Y`
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
X_chunks = self.X
|
| 83 |
+
Y_chunks = Y
|
| 84 |
+
self.Y = Y
|
| 85 |
+
log_prob = 0
|
| 86 |
+
|
| 87 |
+
for x in X_chunks:
|
| 88 |
+
for y in Y_chunks:
|
| 89 |
+
|
| 90 |
+
log_prob += self.score_samples(y,x).sum(dim=0)
|
| 91 |
+
|
| 92 |
+
return log_prob
|
| 93 |
+
|
| 94 |
+
class Chi2KDE(Distribution):
|
| 95 |
+
def __init__(self, X, bw):
|
| 96 |
+
"""
|
| 97 |
+
X : tensor (n, d)
|
| 98 |
+
`n` points with `d` dimensions to which KDE will be fit
|
| 99 |
+
bw : numeric
|
| 100 |
+
bandwidth for Gaussian kernel
|
| 101 |
+
"""
|
| 102 |
+
self.X = X
|
| 103 |
+
self.bw = bw
|
| 104 |
+
self.dims = X.shape[-1]
|
| 105 |
+
self.n = X.shape[0]
|
| 106 |
+
self.mvn = Chi2(self.dims)
|
| 107 |
+
|
| 108 |
+
def sample(self, num_samples):
|
| 109 |
+
idxs = (np.random.uniform(0, 1, num_samples) * self.n).astype(int)
|
| 110 |
+
norm = LogNormal(loc=self.X[idxs], scale=self.bw)
|
| 111 |
+
return norm.sample()
|
| 112 |
+
|
| 113 |
+
def score_samples(self, Y, X=None):
|
| 114 |
+
"""Returns the kernel density estimates of each point in `Y`.
|
| 115 |
+
|
| 116 |
+
Parameters
|
| 117 |
+
----------
|
| 118 |
+
Y : tensor (m, d)
|
| 119 |
+
`m` points with `d` dimensions for which the probability density will
|
| 120 |
+
be calculated
|
| 121 |
+
X : tensor (n, d), optional
|
| 122 |
+
`n` points with `d` dimensions to which KDE will be fit. Provided to
|
| 123 |
+
allow batch calculations in `log_prob`. By default, `X` is None and
|
| 124 |
+
all points used to initialize KernelDensityEstimator are included.
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
Returns
|
| 128 |
+
-------
|
| 129 |
+
log_probs : tensor (m)
|
| 130 |
+
log probability densities for each of the queried points in `Y`
|
| 131 |
+
"""
|
| 132 |
+
if X == None:
|
| 133 |
+
X = self.X
|
| 134 |
+
log_probs = self.mvn.log_prob(abs(X.unsqueeze(1) - Y)).sum()
|
| 135 |
+
|
| 136 |
+
return log_probs
|
| 137 |
+
|
| 138 |
+
def log_prob(self, Y):
|
| 139 |
+
"""Returns the total log probability of one or more points, `Y`, using
|
| 140 |
+
a Multivariate Normal kernel fit to `X` and scaled using `bw`.
|
| 141 |
+
|
| 142 |
+
Parameters
|
| 143 |
+
----------
|
| 144 |
+
Y : tensor (m, d)
|
| 145 |
+
`m` points with `d` dimensions for which the probability density will
|
| 146 |
+
be calculated
|
| 147 |
+
|
| 148 |
+
Returns
|
| 149 |
+
-------
|
| 150 |
+
log_prob : numeric
|
| 151 |
+
total log probability density for the queried points, `Y`
|
| 152 |
+
"""
|
| 153 |
+
|
| 154 |
+
X_chunks = self.X
|
| 155 |
+
Y_chunks = Y
|
| 156 |
+
self.Y = Y
|
| 157 |
+
log_prob = 0
|
| 158 |
+
|
| 159 |
+
for x in X_chunks:
|
| 160 |
+
for y in Y_chunks:
|
| 161 |
+
|
| 162 |
+
log_prob += self.score_samples(y,x).sum(dim=0)
|
| 163 |
+
|
| 164 |
+
return log_prob
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class PlanarFlow(nn.Module):
|
| 168 |
+
"""
|
| 169 |
+
A single planar flow, computes T(x) and log(det(jac_T)))
|
| 170 |
+
"""
|
| 171 |
+
def __init__(self, D):
|
| 172 |
+
super(PlanarFlow, self).__init__()
|
| 173 |
+
self.u = nn.Parameter(torch.Tensor(1, D), requires_grad=True)
|
| 174 |
+
self.w = nn.Parameter(torch.Tensor(1, D), requires_grad=True)
|
| 175 |
+
self.b = nn.Parameter(torch.Tensor(1), requires_grad=True)
|
| 176 |
+
self.h = torch.tanh
|
| 177 |
+
self.init_params()
|
| 178 |
+
|
| 179 |
+
def init_params(self):
|
| 180 |
+
self.w.data.uniform_(0.4, 1)
|
| 181 |
+
self.b.data.uniform_(0.4, 1)
|
| 182 |
+
self.u.data.uniform_(0.4, 1)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def forward(self, z):
|
| 186 |
+
linear_term = torch.mm(z, self.w.T) + self.b
|
| 187 |
+
return z + self.u * self.h(linear_term)
|
| 188 |
+
|
| 189 |
+
def h_prime(self, x):
|
| 190 |
+
"""
|
| 191 |
+
Derivative of tanh
|
| 192 |
+
"""
|
| 193 |
+
return (1 - self.h(x) ** 2)
|
| 194 |
+
|
| 195 |
+
def psi(self, z):
|
| 196 |
+
inner = torch.mm(z, self.w.T) + self.b
|
| 197 |
+
return self.h_prime(inner) * self.w
|
| 198 |
+
|
| 199 |
+
def log_det(self, z):
|
| 200 |
+
inner = 1 + torch.mm(self.psi(z), self.u.T)
|
| 201 |
+
return torch.log(torch.abs(inner))
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
# It's a normalizing flow that takes in a distribution and outputs a distribution.
|
| 205 |
+
class NormalizingFlow(nn.Module):
|
| 206 |
+
"""
|
| 207 |
+
A normalizng flow composed of a sequence of planar flows.
|
| 208 |
+
"""
|
| 209 |
+
def __init__(self, D, n_flows=2):
|
| 210 |
+
"""
|
| 211 |
+
The function takes in two arguments, D and n_flows. D is the dimension of the data, and n_flows
|
| 212 |
+
is the number of flows. The function then creates a list of PlanarFlow objects, where the number
|
| 213 |
+
of PlanarFlow objects is equal to n_flows
|
| 214 |
+
|
| 215 |
+
:param D: the dimensionality of the data
|
| 216 |
+
:param n_flows: number of flows to use, defaults to 2 (optional)
|
| 217 |
+
"""
|
| 218 |
+
super(NormalizingFlow, self).__init__()
|
| 219 |
+
self.flows = nn.ModuleList(
|
| 220 |
+
[PlanarFlow(D) for _ in range(n_flows)])
|
| 221 |
+
|
| 222 |
+
def sample(self, base_samples):
|
| 223 |
+
"""
|
| 224 |
+
Transform samples from a simple base distribution
|
| 225 |
+
by passing them through a sequence of Planar flows.
|
| 226 |
+
"""
|
| 227 |
+
samples = base_samples
|
| 228 |
+
for flow in self.flows:
|
| 229 |
+
samples = flow(samples)
|
| 230 |
+
return samples
|
| 231 |
+
|
| 232 |
+
def forward(self, x):
|
| 233 |
+
"""
|
| 234 |
+
Computes and returns the sum of log_det_jacobians
|
| 235 |
+
and the transformed samples T(x).
|
| 236 |
+
"""
|
| 237 |
+
sum_log_det = 0
|
| 238 |
+
transformed_sample = x
|
| 239 |
+
|
| 240 |
+
for i in range(len(self.flows)):
|
| 241 |
+
log_det_i = (self.flows[i].log_det(transformed_sample))
|
| 242 |
+
sum_log_det += log_det_i
|
| 243 |
+
transformed_sample = self.flows[i](transformed_sample)
|
| 244 |
+
|
| 245 |
+
return transformed_sample, sum_log_det
|
| 246 |
+
|
| 247 |
+
def random_normal_samples(n, dim=2):
|
| 248 |
+
return torch.zeros(n, dim).normal_(mean=0, std=1.5)
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
class nflow():
|
| 254 |
+
def __init__(self,dim=2,latent=16,batchsize:int=1,dataset=None):
|
| 255 |
+
"""
|
| 256 |
+
The function __init__ initializes the class NormalizingFlowModel with the parameters dim,
|
| 257 |
+
latent, batchsize, and datasetPath
|
| 258 |
+
|
| 259 |
+
:param dim: The dimension of the data, defaults to 2 (optional)
|
| 260 |
+
:param latent: The number of latent variables in the model, defaults to 16 (optional)
|
| 261 |
+
:param batchsize: The number of samples to generate at a time, defaults to 1
|
| 262 |
+
:type batchsize: int (optional)
|
| 263 |
+
:param datasetPath: The path to the dataset, defaults to data/dataset.csv
|
| 264 |
+
:type datasetPath: str (optional)
|
| 265 |
+
"""
|
| 266 |
+
self.dim = dim
|
| 267 |
+
self.batchsize = batchsize
|
| 268 |
+
self.model = NormalizingFlow(dim, latent)
|
| 269 |
+
self.dataset = dataset
|
| 270 |
+
|
| 271 |
+
def compile(self,optim:torch.optim=torch.optim.Adam,distribution:str='GaussianKDE',lr:float=0.00015,bw:float=0.1,wd=0.0015):
|
| 272 |
+
"""
|
| 273 |
+
It takes in a dataset, a model, and a distribution, and returns a compiled model
|
| 274 |
+
|
| 275 |
+
:param optim: the optimizer to use
|
| 276 |
+
:type optim: torch.optim
|
| 277 |
+
:param distribution: the type of distribution to use, defaults to GaussianKDE
|
| 278 |
+
:type distribution: str (optional)
|
| 279 |
+
:param lr: learning rate
|
| 280 |
+
:type lr: float
|
| 281 |
+
:param bw: bandwidth for the KDE
|
| 282 |
+
:type bw: float
|
| 283 |
+
"""
|
| 284 |
+
if wd:
|
| 285 |
+
self.opt = optim(
|
| 286 |
+
params=self.model.parameters(),
|
| 287 |
+
lr=lr,
|
| 288 |
+
weight_decay = wd
|
| 289 |
+
# momentum=0.9
|
| 290 |
+
# momentum=0.1
|
| 291 |
+
)
|
| 292 |
+
else:
|
| 293 |
+
self.opt = optim(
|
| 294 |
+
params=self.model.parameters(),
|
| 295 |
+
lr=lr,
|
| 296 |
+
# momentum=0.9
|
| 297 |
+
# momentum=0.1
|
| 298 |
+
)
|
| 299 |
+
self.scaler = StandardScaler()
|
| 300 |
+
self.scaler_mm = MinMaxScaler(feature_range=(0,1))
|
| 301 |
+
|
| 302 |
+
df = pd.read_csv(self.dataset)
|
| 303 |
+
df = df.iloc[:,1:]
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
if 'Chi2' in distribution:
|
| 307 |
+
self.scaled=self.scaler_mm.fit_transform(df)
|
| 308 |
+
else: self.scaled = self.scaler.fit_transform(df)
|
| 309 |
+
|
| 310 |
+
self.density = globals()[distribution](X=torch.tensor(self.scaled, dtype=torch.float32), bw=bw)
|
| 311 |
+
|
| 312 |
+
# self.dl = torch.utils.data.DataLoader(scaled,batchsize=self.batchsize)
|
| 313 |
+
self.scheduler = ReduceLROnPlateau(self.opt, patience=10000)
|
| 314 |
+
self.losses = []
|
| 315 |
+
|
| 316 |
+
def train(self,iters:int=1000):
|
| 317 |
+
"""
|
| 318 |
+
> We sample from a normal distribution, pass the samples through the model, and then calculate
|
| 319 |
+
the loss
|
| 320 |
+
|
| 321 |
+
:param iters: number of iterations to train for, defaults to 1000
|
| 322 |
+
:type iters: int (optional)
|
| 323 |
+
"""
|
| 324 |
+
for idx in range(iters):
|
| 325 |
+
if idx % 100 == 0:
|
| 326 |
+
print("Iteration {}".format(idx))
|
| 327 |
+
|
| 328 |
+
samples = torch.autograd.Variable(random_normal_samples(self.batchsize,self.dim))
|
| 329 |
+
|
| 330 |
+
z_k, sum_log_det = self.model(samples)
|
| 331 |
+
log_p_x = self.density.log_prob(z_k)
|
| 332 |
+
# Reverse KL since we can evaluate target density but can't sample
|
| 333 |
+
loss = (-sum_log_det - (log_p_x)).mean()
|
| 334 |
+
|
| 335 |
+
self.opt.zero_grad()
|
| 336 |
+
loss.backward()
|
| 337 |
+
self.opt.step()
|
| 338 |
+
self.scheduler.step(loss)
|
| 339 |
+
|
| 340 |
+
self.losses.append(loss.item())
|
| 341 |
+
|
| 342 |
+
if idx % 100 == 0:
|
| 343 |
+
print("Loss {}".format(loss.item()))
|
| 344 |
+
|
| 345 |
+
plt.plot(self.losses)
|
| 346 |
+
|
| 347 |
+
def performance(self):
|
| 348 |
+
"""
|
| 349 |
+
The function takes the model and the scaled data as inputs, samples from the model, and then
|
| 350 |
+
prints the r2 score of the samples and the scaled data.
|
| 351 |
+
"""
|
| 352 |
+
samples = ((self.model.sample(torch.tensor(self.scaled).float())).detach().numpy())
|
| 353 |
+
|
| 354 |
+
print('r2', r2_score(self.scaled,samples))
|
requirements.txt
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair==4.2.2
|
| 2 |
+
attrs==22.2.0
|
| 3 |
+
blinker==1.5
|
| 4 |
+
cachetools==5.3.0
|
| 5 |
+
certifi==2022.12.7
|
| 6 |
+
charset-normalizer==3.1.0
|
| 7 |
+
click==8.1.3
|
| 8 |
+
contourpy==1.0.7
|
| 9 |
+
cycler==0.11.0
|
| 10 |
+
decorator==5.1.1
|
| 11 |
+
entrypoints==0.4
|
| 12 |
+
filelock==3.10.0
|
| 13 |
+
fonttools==4.39.2
|
| 14 |
+
gitdb==4.0.10
|
| 15 |
+
GitPython==3.1.31
|
| 16 |
+
idna==3.4
|
| 17 |
+
importlib-metadata==6.0.0
|
| 18 |
+
Jinja2==3.1.2
|
| 19 |
+
joblib==1.2.0
|
| 20 |
+
jsonschema==4.17.3
|
| 21 |
+
kiwisolver==1.4.4
|
| 22 |
+
markdown-it-py==2.2.0
|
| 23 |
+
MarkupSafe==2.1.2
|
| 24 |
+
matplotlib==3.7.1
|
| 25 |
+
mdurl==0.1.2
|
| 26 |
+
mpmath==1.3.0
|
| 27 |
+
networkx==3.0
|
| 28 |
+
numpy==1.24.2
|
| 29 |
+
packaging==23.0
|
| 30 |
+
pandas==1.5.3
|
| 31 |
+
Pillow==9.4.0
|
| 32 |
+
protobuf==3.20.3
|
| 33 |
+
pyarrow==11.0.0
|
| 34 |
+
pydeck==0.8.0
|
| 35 |
+
Pygments==2.14.0
|
| 36 |
+
Pympler==1.0.1
|
| 37 |
+
pyparsing==3.0.9
|
| 38 |
+
pyrsistent==0.19.3
|
| 39 |
+
python-dateutil==2.8.2
|
| 40 |
+
pytz==2022.7.1
|
| 41 |
+
pytz-deprecation-shim==0.1.0.post0
|
| 42 |
+
requests==2.28.2
|
| 43 |
+
rich==13.3.2
|
| 44 |
+
scikit-learn==1.2.2
|
| 45 |
+
scipy==1.10.1
|
| 46 |
+
seaborn==0.12.2
|
| 47 |
+
semver==2.13.0
|
| 48 |
+
six==1.16.0
|
| 49 |
+
smmap==5.0.0
|
| 50 |
+
streamlit==1.20.0
|
| 51 |
+
sympy==1.11.1
|
| 52 |
+
threadpoolctl==3.1.0
|
| 53 |
+
toml==0.10.2
|
| 54 |
+
toolz==0.12.0
|
| 55 |
+
torch==2.0.0
|
| 56 |
+
tornado==6.2
|
| 57 |
+
typing_extensions==4.5.0
|
| 58 |
+
tzdata==2022.7
|
| 59 |
+
tzlocal==4.2
|
| 60 |
+
urllib3==1.26.15
|
| 61 |
+
validators==0.20.0
|
| 62 |
+
watchdog==2.3.1
|
| 63 |
+
zipp==3.15.0
|