Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .config/.last_opt_in_prompt.yaml +1 -0
- .config/.last_survey_prompt.yaml +1 -0
- .config/.last_update_check.json +1 -0
- .config/active_config +1 -0
- .config/config_sentinel +0 -0
- .config/configurations/config_default +6 -0
- .config/default_configs.db +0 -0
- .config/gce +1 -0
- .config/hidden_gcloud_config_universe_descriptor_data_cache_configs.db +0 -0
- .gitattributes +2 -0
- .gradio/certificate.pem +31 -0
- app.py +46 -31
- sample_data/README.md +19 -0
- sample_data/anscombe.json +49 -0
- sample_data/california_housing_test.csv +0 -0
- sample_data/california_housing_train.csv +0 -0
- sample_data/mnist_test.csv +3 -0
- sample_data/mnist_train_small.csv +3 -0
.config/.last_opt_in_prompt.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
.config/.last_survey_prompt.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
last_prompt_time: 1760622052.5923831
|
.config/.last_update_check.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"last_update_check_time": 1760622059.1239753, "last_update_check_revision": 20251010143653, "notifications": [], "last_nag_times": {}}
|
.config/active_config
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
default
|
.config/config_sentinel
ADDED
|
File without changes
|
.config/configurations/config_default
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[component_manager]
|
| 2 |
+
disable_update_check = true
|
| 3 |
+
|
| 4 |
+
[compute]
|
| 5 |
+
gce_metadata_read_timeout_sec = 0
|
| 6 |
+
|
.config/default_configs.db
ADDED
|
Binary file (12.3 kB). View file
|
|
|
.config/gce
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
False
|
.config/hidden_gcloud_config_universe_descriptor_data_cache_configs.db
ADDED
|
Binary file (12.3 kB). View file
|
|
|
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
sample_data/mnist_test.csv filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
sample_data/mnist_train_small.csv filter=lfs diff=lfs merge=lfs -text
|
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
app.py
CHANGED
|
@@ -1,11 +1,15 @@
|
|
| 1 |
-
|
| 2 |
-
import pathlib, shutil, zipfile
|
| 3 |
import pandas as pd
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
from autogluon.tabular import TabularPredictor
|
| 7 |
|
| 8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
MODEL_REPO_ID = "Iris314/classical-automl-model"
|
| 10 |
ZIP_FILENAME = "lego_predictor_dir.zip"
|
| 11 |
|
|
@@ -18,7 +22,7 @@ COLUMN_ALIAS = {
|
|
| 18 |
}
|
| 19 |
FEATURE_COLS_UI = ["Length", "Height", "Width", "Studs"]
|
| 20 |
|
| 21 |
-
#
|
| 22 |
CACHE_DIR = pathlib.Path("hf_cache"); EXTRACT_DIR = CACHE_DIR / "predictor"
|
| 23 |
CACHE_DIR.mkdir(exist_ok=True, parents=True)
|
| 24 |
|
|
@@ -32,20 +36,26 @@ def load_predictor():
|
|
| 32 |
)
|
| 33 |
if EXTRACT_DIR.exists():
|
| 34 |
shutil.rmtree(EXTRACT_DIR)
|
| 35 |
-
EXTRACT_DIR.mkdir(parents=True
|
| 36 |
with zipfile.ZipFile(local_zip, "r") as zf:
|
| 37 |
zf.extractall(EXTRACT_DIR)
|
| 38 |
kids = list(EXTRACT_DIR.iterdir())
|
| 39 |
path = kids[0] if len(kids) == 1 and kids[0].is_dir() else EXTRACT_DIR
|
| 40 |
return TabularPredictor.load(str(path), require_py_version_match=False)
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
|
|
|
| 44 |
def _cast_and_rename(row_dict):
|
| 45 |
row = dict(row_dict)
|
| 46 |
row["Length"] = float(row["Length"])
|
| 47 |
row["Height"] = float(row["Height"])
|
| 48 |
row["Width"] = float(row["Width"])
|
|
|
|
| 49 |
row["Studs"] = int(round(float(row["Studs"])))
|
| 50 |
X_ui = pd.DataFrame([row], columns=FEATURE_COLS_UI)
|
| 51 |
X_model = X_ui.rename(columns=COLUMN_ALIAS)
|
|
@@ -53,40 +63,45 @@ def _cast_and_rename(row_dict):
|
|
| 53 |
|
| 54 |
def classify_brick(length, height, width, studs):
|
| 55 |
try:
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
try:
|
| 60 |
proba = PREDICTOR.predict_proba(X)
|
| 61 |
s = proba.iloc[0] if hasattr(proba, "iloc") else proba
|
| 62 |
s = s.sort_values(ascending=False)
|
| 63 |
-
s.index = [str(k) for k in s.index]
|
| 64 |
return {k: float(v) for k, v in s.items()}
|
| 65 |
except Exception:
|
|
|
|
|
|
|
| 66 |
return {"prediction": str(pred_val)}
|
| 67 |
except Exception as e:
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
examples=[[4, 1.2, 2, 4],[2, 0.6, 2, 2],[3, 2.0, 2, 2]],
|
| 86 |
-
inputs=[length, height, width, studs],
|
| 87 |
-
label="Examples",
|
| 88 |
-
cache_examples=False
|
| 89 |
-
)
|
| 90 |
|
| 91 |
if __name__ == "__main__":
|
|
|
|
| 92 |
demo.launch()
|
|
|
|
| 1 |
+
import pathlib, shutil, zipfile, os, traceback
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import gradio as gr
|
| 4 |
+
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
from autogluon.tabular import TabularPredictor
|
| 7 |
|
| 8 |
+
# ---------------- UI copy ----------------
|
| 9 |
+
TITLE = "🧱 LEGO Brick Classifier"
|
| 10 |
+
DESC = "Predicts whether a LEGO piece is Standard, Flat, or Sloped from basic dimensions."
|
| 11 |
+
|
| 12 |
+
# ---------------- Settings ----------------
|
| 13 |
MODEL_REPO_ID = "Iris314/classical-automl-model"
|
| 14 |
ZIP_FILENAME = "lego_predictor_dir.zip"
|
| 15 |
|
|
|
|
| 22 |
}
|
| 23 |
FEATURE_COLS_UI = ["Length", "Height", "Width", "Studs"]
|
| 24 |
|
| 25 |
+
# ---------------- Load predictor ----------------
|
| 26 |
CACHE_DIR = pathlib.Path("hf_cache"); EXTRACT_DIR = CACHE_DIR / "predictor"
|
| 27 |
CACHE_DIR.mkdir(exist_ok=True, parents=True)
|
| 28 |
|
|
|
|
| 36 |
)
|
| 37 |
if EXTRACT_DIR.exists():
|
| 38 |
shutil.rmtree(EXTRACT_DIR)
|
| 39 |
+
EXTRACT_DIR.mkdir(parents=True)
|
| 40 |
with zipfile.ZipFile(local_zip, "r") as zf:
|
| 41 |
zf.extractall(EXTRACT_DIR)
|
| 42 |
kids = list(EXTRACT_DIR.iterdir())
|
| 43 |
path = kids[0] if len(kids) == 1 and kids[0].is_dir() else EXTRACT_DIR
|
| 44 |
return TabularPredictor.load(str(path), require_py_version_match=False)
|
| 45 |
|
| 46 |
+
try:
|
| 47 |
+
PREDICTOR = load_predictor()
|
| 48 |
+
except Exception as e:
|
| 49 |
+
PREDICTOR = None
|
| 50 |
+
print("Failed to load predictor:", e)
|
| 51 |
|
| 52 |
+
# ---------------- Helpers ----------------
|
| 53 |
def _cast_and_rename(row_dict):
|
| 54 |
row = dict(row_dict)
|
| 55 |
row["Length"] = float(row["Length"])
|
| 56 |
row["Height"] = float(row["Height"])
|
| 57 |
row["Width"] = float(row["Width"])
|
| 58 |
+
# gr.Number returns float; round & cast for integer feature
|
| 59 |
row["Studs"] = int(round(float(row["Studs"])))
|
| 60 |
X_ui = pd.DataFrame([row], columns=FEATURE_COLS_UI)
|
| 61 |
X_model = X_ui.rename(columns=COLUMN_ALIAS)
|
|
|
|
| 63 |
|
| 64 |
def classify_brick(length, height, width, studs):
|
| 65 |
try:
|
| 66 |
+
if PREDICTOR is None:
|
| 67 |
+
raise RuntimeError("Model failed to load on startup. Check model artifact path & runtime deps.")
|
| 68 |
+
|
| 69 |
+
X = _cast_and_rename({
|
| 70 |
+
"Length": length, "Height": height, "Width": width, "Studs": studs
|
| 71 |
+
})
|
| 72 |
+
|
| 73 |
+
# Try probabilities; fall back to label
|
| 74 |
try:
|
| 75 |
proba = PREDICTOR.predict_proba(X)
|
| 76 |
s = proba.iloc[0] if hasattr(proba, "iloc") else proba
|
| 77 |
s = s.sort_values(ascending=False)
|
| 78 |
+
s.index = [str(k) for k in s.index] # ensure JSON-serializable keys
|
| 79 |
return {k: float(v) for k, v in s.items()}
|
| 80 |
except Exception:
|
| 81 |
+
pred = PREDICTOR.predict(X)
|
| 82 |
+
pred_val = pred.iloc[0] if hasattr(pred, "iloc") else pred
|
| 83 |
return {"prediction": str(pred_val)}
|
| 84 |
except Exception as e:
|
| 85 |
+
return {
|
| 86 |
+
"error": f"{type(e).__name__}: {e}",
|
| 87 |
+
"traceback": traceback.format_exc(limit=1)
|
| 88 |
+
}
|
| 89 |
|
| 90 |
+
# ---------------- Gradio ----------------
|
| 91 |
+
demo = gr.Interface(
|
| 92 |
+
fn=classify_brick,
|
| 93 |
+
inputs=[
|
| 94 |
+
gr.Slider(1, 10, step=0.1, value=4, label="Length"),
|
| 95 |
+
gr.Slider(0.2, 5, step=0.1, value=1.2, label="Height"),
|
| 96 |
+
gr.Slider(1, 10, step=0.1, value=2, label="Width"),
|
| 97 |
+
gr.Number(value=4, precision=0, label="Studs"),
|
| 98 |
+
],
|
| 99 |
+
outputs=gr.Label(num_top_classes=3, label="Predicted Class / Probabilities"),
|
| 100 |
+
examples=[[4, 1.2, 2, 4], [2, 0.6, 2, 2], [3, 2.0, 2, 2]],
|
| 101 |
+
title=TITLE,
|
| 102 |
+
description=DESC
|
| 103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
if __name__ == "__main__":
|
| 106 |
+
# In Spaces, no share=True needed
|
| 107 |
demo.launch()
|
sample_data/README.md
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
This directory includes a few sample datasets to get you started.
|
| 2 |
+
|
| 3 |
+
* `california_housing_data*.csv` is California housing data from the 1990 US
|
| 4 |
+
Census; more information is available at:
|
| 5 |
+
https://docs.google.com/document/d/e/2PACX-1vRhYtsvc5eOR2FWNCwaBiKL6suIOrxJig8LcSBbmCbyYsayia_DvPOOBlXZ4CAlQ5nlDD8kTaIDRwrN/pub
|
| 6 |
+
|
| 7 |
+
* `mnist_*.csv` is a small sample of the
|
| 8 |
+
[MNIST database](https://en.wikipedia.org/wiki/MNIST_database), which is
|
| 9 |
+
described at: http://yann.lecun.com/exdb/mnist/
|
| 10 |
+
|
| 11 |
+
* `anscombe.json` contains a copy of
|
| 12 |
+
[Anscombe's quartet](https://en.wikipedia.org/wiki/Anscombe%27s_quartet); it
|
| 13 |
+
was originally described in
|
| 14 |
+
|
| 15 |
+
Anscombe, F. J. (1973). 'Graphs in Statistical Analysis'. American
|
| 16 |
+
Statistician. 27 (1): 17-21. JSTOR 2682899.
|
| 17 |
+
|
| 18 |
+
and our copy was prepared by the
|
| 19 |
+
[vega_datasets library](https://github.com/altair-viz/vega_datasets/blob/4f67bdaad10f45e3549984e17e1b3088c731503d/vega_datasets/_data/anscombe.json).
|
sample_data/anscombe.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{"Series":"I", "X":10.0, "Y":8.04},
|
| 3 |
+
{"Series":"I", "X":8.0, "Y":6.95},
|
| 4 |
+
{"Series":"I", "X":13.0, "Y":7.58},
|
| 5 |
+
{"Series":"I", "X":9.0, "Y":8.81},
|
| 6 |
+
{"Series":"I", "X":11.0, "Y":8.33},
|
| 7 |
+
{"Series":"I", "X":14.0, "Y":9.96},
|
| 8 |
+
{"Series":"I", "X":6.0, "Y":7.24},
|
| 9 |
+
{"Series":"I", "X":4.0, "Y":4.26},
|
| 10 |
+
{"Series":"I", "X":12.0, "Y":10.84},
|
| 11 |
+
{"Series":"I", "X":7.0, "Y":4.81},
|
| 12 |
+
{"Series":"I", "X":5.0, "Y":5.68},
|
| 13 |
+
|
| 14 |
+
{"Series":"II", "X":10.0, "Y":9.14},
|
| 15 |
+
{"Series":"II", "X":8.0, "Y":8.14},
|
| 16 |
+
{"Series":"II", "X":13.0, "Y":8.74},
|
| 17 |
+
{"Series":"II", "X":9.0, "Y":8.77},
|
| 18 |
+
{"Series":"II", "X":11.0, "Y":9.26},
|
| 19 |
+
{"Series":"II", "X":14.0, "Y":8.10},
|
| 20 |
+
{"Series":"II", "X":6.0, "Y":6.13},
|
| 21 |
+
{"Series":"II", "X":4.0, "Y":3.10},
|
| 22 |
+
{"Series":"II", "X":12.0, "Y":9.13},
|
| 23 |
+
{"Series":"II", "X":7.0, "Y":7.26},
|
| 24 |
+
{"Series":"II", "X":5.0, "Y":4.74},
|
| 25 |
+
|
| 26 |
+
{"Series":"III", "X":10.0, "Y":7.46},
|
| 27 |
+
{"Series":"III", "X":8.0, "Y":6.77},
|
| 28 |
+
{"Series":"III", "X":13.0, "Y":12.74},
|
| 29 |
+
{"Series":"III", "X":9.0, "Y":7.11},
|
| 30 |
+
{"Series":"III", "X":11.0, "Y":7.81},
|
| 31 |
+
{"Series":"III", "X":14.0, "Y":8.84},
|
| 32 |
+
{"Series":"III", "X":6.0, "Y":6.08},
|
| 33 |
+
{"Series":"III", "X":4.0, "Y":5.39},
|
| 34 |
+
{"Series":"III", "X":12.0, "Y":8.15},
|
| 35 |
+
{"Series":"III", "X":7.0, "Y":6.42},
|
| 36 |
+
{"Series":"III", "X":5.0, "Y":5.73},
|
| 37 |
+
|
| 38 |
+
{"Series":"IV", "X":8.0, "Y":6.58},
|
| 39 |
+
{"Series":"IV", "X":8.0, "Y":5.76},
|
| 40 |
+
{"Series":"IV", "X":8.0, "Y":7.71},
|
| 41 |
+
{"Series":"IV", "X":8.0, "Y":8.84},
|
| 42 |
+
{"Series":"IV", "X":8.0, "Y":8.47},
|
| 43 |
+
{"Series":"IV", "X":8.0, "Y":7.04},
|
| 44 |
+
{"Series":"IV", "X":8.0, "Y":5.25},
|
| 45 |
+
{"Series":"IV", "X":19.0, "Y":12.50},
|
| 46 |
+
{"Series":"IV", "X":8.0, "Y":5.56},
|
| 47 |
+
{"Series":"IV", "X":8.0, "Y":7.91},
|
| 48 |
+
{"Series":"IV", "X":8.0, "Y":6.89}
|
| 49 |
+
]
|
sample_data/california_housing_test.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
sample_data/california_housing_train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
sample_data/mnist_test.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51c292478d94ec3a01461bdfa82eb0885d262eb09e615679b2d69dedb6ad09e7
|
| 3 |
+
size 18289443
|
sample_data/mnist_train_small.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ef64781aa03180f4f5ce504314f058f5d0227277df86060473d973cf43b033e
|
| 3 |
+
size 36523880
|