Spaces:
Runtime error
Runtime error
lint correction
Browse files
app.py
CHANGED
@@ -1,29 +1,14 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
-
from langchain.document_loaders import PyPDFLoader
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
from transformers import pipeline
|
6 |
-
import base64
|
7 |
-
from huggingface_hub import login
|
8 |
-
import torch
|
9 |
-
import fitz # PyMuPDF
|
10 |
|
11 |
-
|
12 |
-
#
|
13 |
-
checkpoint = "MBZUAI/LaMini-Flan-T5-248M"
|
14 |
-
# checkpoint = "google/flan-t5-base"
|
15 |
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
16 |
-
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint
|
17 |
|
18 |
# LLM pipeline
|
19 |
-
def llm_pipeline(
|
20 |
-
# Extract text from the PDF contents
|
21 |
-
pdf_document = fitz.open(stream=pdf_contents, filetype="pdf")
|
22 |
-
pdf_text = ""
|
23 |
-
for page_num in range(pdf_document.page_count):
|
24 |
-
page = pdf_document.load_page(page_num)
|
25 |
-
pdf_text += page.get_text()
|
26 |
-
|
27 |
# Use the pipeline to generate the summary
|
28 |
pipe_sum = pipeline(
|
29 |
'summarization',
|
@@ -33,7 +18,7 @@ def llm_pipeline(pdf_contents):
|
|
33 |
min_length=50
|
34 |
)
|
35 |
|
36 |
-
result = pipe_sum(
|
37 |
summary = result[0]['summary_text']
|
38 |
return summary
|
39 |
|
@@ -41,13 +26,14 @@ def llm_pipeline(pdf_contents):
|
|
41 |
st.set_page_config(layout="wide")
|
42 |
|
43 |
def main():
|
44 |
-
st.title("Document Summarization App using
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
if
|
49 |
if st.button("Summarize"):
|
50 |
-
summary = llm_pipeline(
|
51 |
|
52 |
# Display the summary
|
53 |
st.info("Summarization Complete")
|
|
|
1 |
+
import streamlit as st
|
|
|
|
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Model and tokenizer loading
|
6 |
+
checkpoint = "t5-small" # Use the smaller "t5-small" model
|
|
|
|
|
7 |
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
8 |
+
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint)
|
9 |
|
10 |
# LLM pipeline
|
11 |
+
def llm_pipeline(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Use the pipeline to generate the summary
|
13 |
pipe_sum = pipeline(
|
14 |
'summarization',
|
|
|
18 |
min_length=50
|
19 |
)
|
20 |
|
21 |
+
result = pipe_sum(text)
|
22 |
summary = result[0]['summary_text']
|
23 |
return summary
|
24 |
|
|
|
26 |
st.set_page_config(layout="wide")
|
27 |
|
28 |
def main():
|
29 |
+
st.title("Document Summarization App using a Smaller Model")
|
30 |
|
31 |
+
# Text input area
|
32 |
+
uploaded_text = st.text_area("Paste your document text here:")
|
33 |
|
34 |
+
if uploaded_text:
|
35 |
if st.button("Summarize"):
|
36 |
+
summary = llm_pipeline(uploaded_text)
|
37 |
|
38 |
# Display the summary
|
39 |
st.info("Summarization Complete")
|