Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,12 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
4 |
from transformers import pipeline
|
5 |
|
6 |
# Model and tokenizer loading
|
7 |
-
checkpoint = "./model/LaMini-Flan-T5-248M"
|
8 |
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
9 |
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint)
|
10 |
|
11 |
# LLM pipeline
|
12 |
-
def llm_pipeline(pdf_contents):
|
13 |
# Extract text from the PDF contents
|
14 |
pdf_document = fitz.open(stream=pdf_contents, filetype="pdf")
|
15 |
pdf_text = ""
|
@@ -22,8 +22,8 @@ def llm_pipeline(pdf_contents):
|
|
22 |
'summarization',
|
23 |
model=base_model,
|
24 |
tokenizer=tokenizer,
|
25 |
-
max_length=
|
26 |
-
min_length=
|
27 |
)
|
28 |
|
29 |
result = pipe_sum(pdf_text)
|
@@ -40,10 +40,13 @@ def main():
|
|
40 |
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
41 |
|
42 |
if uploaded_file is not None:
|
|
|
|
|
|
|
43 |
if st.button("Summarize"):
|
44 |
# Check if the uploaded file is a PDF
|
45 |
if uploaded_file.type == "application/pdf":
|
46 |
-
summary = llm_pipeline(uploaded_file.read())
|
47 |
|
48 |
# Display the summary
|
49 |
st.info("Summarization Complete")
|
|
|
4 |
from transformers import pipeline
|
5 |
|
6 |
# Model and tokenizer loading
|
7 |
+
checkpoint = "./model/LaMini-Flan-T5-248M"
|
8 |
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
9 |
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint)
|
10 |
|
11 |
# LLM pipeline
|
12 |
+
def llm_pipeline(pdf_contents, max_length=500, min_length=50):
|
13 |
# Extract text from the PDF contents
|
14 |
pdf_document = fitz.open(stream=pdf_contents, filetype="pdf")
|
15 |
pdf_text = ""
|
|
|
22 |
'summarization',
|
23 |
model=base_model,
|
24 |
tokenizer=tokenizer,
|
25 |
+
max_length=max_length,
|
26 |
+
min_length=min_length
|
27 |
)
|
28 |
|
29 |
result = pipe_sum(pdf_text)
|
|
|
40 |
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
41 |
|
42 |
if uploaded_file is not None:
|
43 |
+
max_length = st.slider("Maximum Summary Length", min_value=50, max_value=1000, step=50, value=500)
|
44 |
+
min_length = st.slider("Minimum Summary Length", min_value=10, max_value=500, step=10, value=50)
|
45 |
+
|
46 |
if st.button("Summarize"):
|
47 |
# Check if the uploaded file is a PDF
|
48 |
if uploaded_file.type == "application/pdf":
|
49 |
+
summary = llm_pipeline(uploaded_file.read(), max_length, min_length)
|
50 |
|
51 |
# Display the summary
|
52 |
st.info("Summarization Complete")
|