Spaces:
Runtime error
Runtime error
import streamlit as st | |
import fitz # PyMuPDF | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from transformers import pipeline | |
# Model and tokenizer loading | |
checkpoint = "./model/LaMini-Flan-T5-248M" | |
tokenizer = T5Tokenizer.from_pretrained(checkpoint) | |
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint) | |
# LLM pipeline | |
def llm_pipeline(pdf_contents, max_length=500, min_length=50): | |
# Extract text from the PDF contents | |
pdf_document = fitz.open(stream=pdf_contents, filetype="pdf") | |
pdf_text = "" | |
for page_num in range(pdf_document.page_count): | |
page = pdf_document.load_page(page_num) | |
pdf_text += page.get_text() | |
# Use the pipeline to generate the summary | |
pipe_sum = pipeline( | |
'summarization', | |
model=base_model, | |
tokenizer=tokenizer, | |
max_length=max_length, | |
min_length=min_length | |
) | |
result = pipe_sum(pdf_text) | |
summary = result[0]['summary_text'] | |
return summary | |
# Streamlit code | |
st.set_page_config(layout="wide") | |
def main(): | |
st.title("Document Summarization using a Language Model") | |
# Button to upload a PDF file | |
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) | |
if uploaded_file is not None: | |
max_length = st.slider("Maximum Summary Length", min_value=50, max_value=1000, step=20, value=500) | |
min_length = st.slider("Minimum Summary Length", min_value=10, max_value=500, step=10, value=50) | |
if st.button("Summarize"): | |
# Check if the uploaded file is a PDF | |
if uploaded_file.type == "application/pdf": | |
summary = llm_pipeline(uploaded_file.read(), max_length, min_length) | |
# Display the summary | |
st.info("Summarization Complete") | |
st.success(summary) | |
else: | |
st.error("Please upload a valid PDF file.") | |
if __name__ == "__main__": | |
main() | |