doc_summaryLLM / app.py
aps19's picture
lint corrected
63bac82
raw
history blame
1.69 kB
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import pipeline
import base64
from huggingface_hub import login
import torch
import fitz # PyMuPDF
# model and tokenizer loading
checkpoint = "MBZUAI/LaMini-Flan-T5-248M"
# checkpoint = "google/flan-t5-base"
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint, device_map='auto', torch_dtype=torch.float32)
# LLM pipeline
def llm_pipeline(pdf_contents):
# Extract text from the PDF contents
pdf_document = fitz.open(stream=pdf_contents, filetype="pdf")
pdf_text = ""
for page_num in range(pdf_document.page_count):
page = pdf_document.load_page(page_num)
pdf_text += page.get_text()
# Use the pipeline to generate the summary
pipe_sum = pipeline(
'summarization',
model=base_model,
tokenizer=tokenizer,
max_length=500,
min_length=50
)
result = pipe_sum(pdf_text)
summary = result[0]['summary_text']
return summary
# Streamlit code
st.set_page_config(layout="wide")
def main():
st.title("Document Summarization App using Language Model")
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
if uploaded_file is not None:
if st.button("Summarize"):
summary = llm_pipeline(uploaded_file.read())
# Display the summary
st.info("Summarization Complete")
st.success(summary)
if __name__ == "__main__":
main()