Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from transformers import T5Tokenizer, T5ForConditionalGeneration | |
| from transformers import pipeline | |
| # Model and tokenizer loading | |
| checkpoint = "./model/google/flan-t5-small" # Use the smaller "t5-small" model | |
| tokenizer = T5Tokenizer.from_pretrained(checkpoint) | |
| base_model = T5ForConditionalGeneration.from_pretrained(checkpoint) | |
| # LLM pipeline | |
| def llm_pipeline(text): | |
| # Use the pipeline to generate the summary | |
| pipe_sum = pipeline( | |
| 'summarization', | |
| model=base_model, | |
| tokenizer=tokenizer, | |
| max_length=500, | |
| min_length=50 | |
| ) | |
| result = pipe_sum(text) | |
| summary = result[0]['summary_text'] | |
| return summary | |
| # Streamlit code | |
| st.set_page_config(layout="wide") | |
| def main(): | |
| st.title("Document Summarization App using a Smaller Model") | |
| # Text input area | |
| uploaded_text = st.text_area("Paste your document text here:") | |
| if uploaded_text: | |
| if st.button("Summarize"): | |
| summary = llm_pipeline(uploaded_text) | |
| # Display the summary | |
| st.info("Summarization Complete") | |
| st.success(summary) | |
| if __name__ == "__main__": | |
| main() | |