Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from transformers import pipeline | |
# Model and tokenizer loading | |
checkpoint = "./model/google/flan-t5-small" # Use the smaller "t5-small" model | |
tokenizer = T5Tokenizer.from_pretrained(checkpoint) | |
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint) | |
# LLM pipeline | |
def llm_pipeline(text): | |
# Use the pipeline to generate the summary | |
pipe_sum = pipeline( | |
'summarization', | |
model=base_model, | |
tokenizer=tokenizer, | |
max_length=500, | |
min_length=50 | |
) | |
result = pipe_sum(text) | |
summary = result[0]['summary_text'] | |
return summary | |
# Streamlit code | |
st.set_page_config(layout="wide") | |
def main(): | |
st.title("Document Summarization App using a Smaller Model") | |
# Text input area | |
uploaded_text = st.text_area("Paste your document text here:") | |
if uploaded_text: | |
if st.button("Summarize"): | |
summary = llm_pipeline(uploaded_text) | |
# Display the summary | |
st.info("Summarization Complete") | |
st.success(summary) | |
if __name__ == "__main__": | |
main() | |