magic-recipe / app.py
Ashhar
removed unnecessary logging
664eb66
import base64
import io
import time
import streamlit as st
from openai import OpenAI
import os
from PIL import Image
from utils import pprint, getFontsUrl
# Load environment variables
from dotenv import load_dotenv
load_dotenv()
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
# model = "gpt-4o-mini"
model = "gpt-4o"
# Set up page configuration
st.set_page_config(
page_title="Magic Recipe Decoder 🍽️",
page_icon="πŸ₯˜",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for styling
st.markdown(
f"""
<head>
<link href="{getFontsUrl()}" rel="stylesheet">
</head>
""" """
<style>
h1 {
font-family: 'Whisper' !important;
# font-size: 2.2rem !important;
}
h3 {
font-size: 1.5rem !important;
}
.big-font {
font-size:20px !important;
color: #2C3E50;
}
.highlight-box {
background-color: #F5F5F5; /* Soft light gray */
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
color: #333333; /* Very dark gray for text */
border: 1px solid #E0E0E0; /* Subtle border */
}
.highlight-box h1 {
color: #1A5F7A; /* Deep teal for main heading */
font-size: 24px;
margin-bottom: 15px;
}
.highlight-box h2 {
color: #2C7DA0; /* Slightly lighter teal for subheadings */
font-size: 20px;
margin-top: 15px;
margin-bottom: 10px;
}
.highlight-box h3 {
color: #468FAF; /* Even lighter teal for smaller headings */
font-size: 18px;
margin-top: 10px;
margin-bottom: 8px;
}
.highlight-box p {
color: #333333; /* Dark gray for paragraphs */
line-height: 1.6;
}
</style>
""",
unsafe_allow_html=True
)
# Initialize session state
if "ipAddress" not in st.session_state:
st.session_state.ipAddress = st.context.headers.get("x-forwarded-for")
if 'cooking_equipment' not in st.session_state:
st.session_state.cooking_equipment = {
'Stove': True,
'Oven': False,
'Microwave': False,
'Blender': False,
'Pressure Cooker': False
}
if 'original_recipe' not in st.session_state:
st.session_state.original_recipe = None
# Add language selection to session state
if 'recipe_language' not in st.session_state:
st.session_state.recipe_language = 'English'
def google_image_search(query):
"""Placeholder for image search - you'll need to implement actual image search API"""
return "https://via.placeholder.com/300x200.png?text=" + query.replace(" ", "+")
def resize_image(image_base64, max_size=1024):
"""
Resize an image from base64 to max dimension of 1024 pixels while maintaining aspect ratio
Args:
image_base64 (str): Base64 encoded image
max_size (int): Maximum dimension for the image
Returns:
str: Resized image as base64 encoded string
"""
# Decode base64 image
image_bytes = base64.b64decode(image_base64)
# Log original image size
original_size = len(image_bytes)
# Open image with Pillow
img = Image.open(io.BytesIO(image_bytes))
# Calculate resize ratio
width, height = img.size
resize_ratio = min(max_size / width, max_size / height)
# If image is already smaller than max_size, return original
if resize_ratio >= 1:
pprint({
"function": "resize_image",
"result": "no_resize_needed",
"original_size_bytes": original_size,
"original_size_kb": round(original_size / 1024)
})
return image_base64
# Calculate new dimensions
new_width = int(width * resize_ratio)
new_height = int(height * resize_ratio)
# Resize image
resized_img = img.resize((new_width, new_height), Image.LANCZOS)
# Convert back to base64
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
resized_bytes = buffered.getvalue()
resized_base64 = base64.b64encode(resized_bytes).decode('utf-8')
# Log resized image size
resized_size = len(resized_bytes)
pprint({
"function": "resize_image",
"original_size_kb": round(original_size / 1024),
"resized_size_kb": round(resized_size / 1024),
"size_reduction_percentage": round(((original_size - resized_size) / original_size) * 100)
})
return resized_base64
def analyze_and_generate_recipe(uploaded_image, available_equipment=None, language='English'):
"""Analyze food image and generate recipe in a single LLM call"""
progress_stages = [
{"message": "πŸ” Scanning the delicious image...", "progress": 10},
{"message": "🧐 Identifying culinary ingredients...", "progress": 30},
{"message": "🍳 Consulting virtual chef's expertise...", "progress": 50},
{"message": "πŸ“ Crafting personalized recipe...", "progress": 70},
{"message": "🌟 Finalizing gourmet instructions...", "progress": 90}
]
# Create a progress bar
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Update progress stages
for stage in progress_stages:
status_text.text(stage["message"])
progress_bar.progress(stage["progress"])
time.sleep(1) # Short delay between stages
# Resize the image before sending to LLM
resized_image_base64 = resize_image(uploaded_image)
# Prepare the system and user messages
messages = [
{
"role": "system",
"content": f"""You are a professional chef and food analyst.
When analyzing a food image, provide a comprehensive recipe in {language} that considers:
1. Detailed food description
2. Complete ingredient list
3. Cooking method
4. Step-by-step instructions"""
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{resized_image_base64}"}
},
{
"type": "text",
"text": f"""Analyze this food image and generate a detailed recipe in {language}.
{'Available cooking equipment: ' + ', '.join(available_equipment) if available_equipment else 'No equipment restrictions'}
If specific equipment is available, prioritize cooking methods that use those tools.
Provide:
- Detailed food description
- Ingredient list
- Cooking method adapted to available equipment
- Difficulty level
- Estimated cooking time
- Precise, step-by-step instructions
Use markdown formatting for clear presentation."""
}
]
}
]
# Log API call details
pprint({
"function": "analyze_and_generate_recipe",
"model": model,
"language": language,
"available_equipment": available_equipment
})
# Make the LLM call
status_text.text("πŸš€ Generating recipe with AI...")
progress_bar.progress(95)
response = client.chat.completions.create(
model=model,
messages=messages
)
# Final progress update
status_text.text("βœ… Recipe generated successfully!")
progress_bar.progress(100)
# Clear the progress bar and status text after a short delay
time.sleep(1)
progress_bar.empty()
status_text.empty()
# Log response details
pprint({
"function": "analyze_and_generate_recipe_response",
"tokens_used": response.usage.total_tokens if response.usage else None,
"response_length": len(response.choices[0].message.content)
})
return response.choices[0].message.content
except Exception as e:
# Clear progress indicators in case of error
progress_bar.empty()
status_text.empty()
st.error(f"Error analyzing image and generating recipe: {e}")
return None
def refine_recipe(original_recipe, user_refinement, language='English'):
"""Refine the recipe based on user input"""
try:
# Log API call details
pprint({
"function": "refine_recipe",
"model": model,
"language": language,
"user_refinement_length": len(user_refinement)
})
response = client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": f"You are a professional chef who can modify recipes based on specific user preferences. Respond in {language}."
},
{
"role": "user",
"content": f"""Original Recipe:
{original_recipe}
User Refinement Request: {user_refinement}
Please modify the recipe according to the user's preferences in {language}.
Provide the updated recipe with clear instructions,
maintaining the original recipe's core structure."""
}
]
)
# Log response details
pprint({
"function": "refine_recipe_response",
"tokens_used": response.usage.total_tokens if response.usage else None,
"response_length": len(response.choices[0].message.content)
})
return response.choices[0].message.content
except Exception as e:
st.error(f"Error refining recipe: {e}")
return None
# Main Streamlit App
st.title("πŸ₯˜ Magic Recipe")
st.markdown("*Discover the secrets behind your favorite dishes!*", unsafe_allow_html=True)
# Sidebar for Cooking Equipment
st.sidebar.header("πŸ”§ Cooking Equipment")
st.sidebar.markdown("Check the equipment you have available:")
for equipment, available in st.session_state.cooking_equipment.items():
st.session_state.cooking_equipment[equipment] = st.sidebar.checkbox(equipment, value=available)
# Language Selection
st.sidebar.header("🌐 Recipe Language")
st.sidebar.markdown("Choose your preferred language:")
# Top 5 Indian languages + English
languages = [
'English',
'Hindi',
'Hinglish',
'Bengali',
'Telugu',
'Marathi',
'Tamil'
]
st.session_state.recipe_language = st.sidebar.selectbox(
"Select Recipe Language",
languages,
index=0
)
# Image Upload and Analysis Section
st.markdown("### πŸ“Έ Upload Your Food Image", unsafe_allow_html=True)
# Add camera input option
img_source = st.radio("Choose image source:", ["Upload from device", "Take a photo"])
if img_source == "Upload from device":
uploaded_file = st.file_uploader("Choose an image...", type=['jpg', 'jpeg', 'png'])
else:
uploaded_file = st.camera_input(
"Take a photo of your dish",
help="Please hold your device vertically for best results",
# Set aspect ratio to portrait (3:4)
key="portrait_camera",
args={
"landscape": False, # Force portrait mode
"aspectRatio": 3 / 4 # Portrait aspect ratio
}
)
# Food Analysis and Recipe Generation
if uploaded_file is not None:
# Display uploaded image
col1, col2 = st.columns(2)
with col1:
st.image(uploaded_file, caption='Uploaded Image', use_container_width=True)
with col2:
# Checkbox to use available cooking equipment
use_available_equipment = st.checkbox("Use only available cooking equipment", value=False)
# Prepare available equipment list if checkbox is selected
available_equipment = []
if use_available_equipment:
available_equipment = [
equip for equip, available in st.session_state.cooking_equipment.items()
if available
]
# Analyze and Generate Recipe
if st.button("Generate Recipe"):
# Analyze image and generate recipe
image_base64 = base64.b64encode(uploaded_file.getvalue()).decode('utf-8')
recipe = analyze_and_generate_recipe(
image_base64,
available_equipment if use_available_equipment else None,
st.session_state.recipe_language
)
if recipe:
# Store original recipe in session state
st.session_state.original_recipe = recipe
# Display the generated recipe
st.markdown("### 🍳 Generated Recipe", unsafe_allow_html=True)
st.markdown(f"<div class='highlight-box'>{recipe}</div>", unsafe_allow_html=True)
# Recipe Refinement Section
if st.session_state.original_recipe:
st.markdown("### πŸ§‘β€πŸ³ Refine Your Recipe", unsafe_allow_html=True)
# Refinement Prompt
user_refinement = st.text_input("Want to modify the recipe? Add your preferences here:")
if st.button("Refine Recipe"):
if user_refinement:
# Refine the recipe
with st.spinner('πŸ”ͺ Refining your recipe...'):
refined_recipe = refine_recipe(
st.session_state.original_recipe,
user_refinement,
st.session_state.recipe_language
)
if refined_recipe:
# Display the refined recipe
st.markdown("### 🍽️ Refined Recipe", unsafe_allow_html=True)
st.markdown(f"<div class='highlight-box'>{refined_recipe}</div>", unsafe_allow_html=True)
else:
st.warning("Please enter refinement preferences.")
# # Visual References
# st.markdown("### πŸ–ΌοΈ Visual References", unsafe_allow_html=True)
# if st.session_state.original_recipe:
# food_name = st.session_state.original_recipe.split('\n')[0]
# image_urls = [google_image_search(food_name) for _ in range(3)]
# cols = st.columns(3)
# for i, url in enumerate(image_urls):
# cols[i].image(url, use_container_width=True)