Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
| # Load text generation model | |
| text_generation_model = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True) | |
| # Load image captioning model | |
| encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
| decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
| model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
| feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
| tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
| model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint) | |
| def generate_story(image, theme, genre): | |
| try: | |
| # Preprocess the image | |
| image = image.convert('RGB') | |
| image_features = feature_extractor(images=image, return_tensors="pt") | |
| # Generate image caption | |
| caption_ids = model.generate(image_features.pixel_values, max_length=50, num_beams=3, temperature=1.0) | |
| # Decode the caption | |
| caption_text = tokenizer.batch_decode(caption_ids, skip_special_tokens=True)[0] | |
| # Generate story based on the caption | |
| story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be about {caption_text}." | |
| story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"] | |
| return story | |
| except Exception as e: | |
| return f"An error occurred during inference: {str(e)}" | |
| # Gradio interface | |
| input_image = gr.Image(label="Select Image",type="pil") | |
| input_theme = gr.Dropdown(["Love and Loss", "Identity and Self-Discovery", "Power and Corruption", "Redemption and Forgiveness", "Survival and Resilience", "Nature and the Environment", "Justice and Injustice", "Friendship and Loyalty", "Hope and Despair"], label="Input Theme") | |
| input_genre = gr.Dropdown(["Fantasy", "Science Fiction", "Poetry", "Mystery/Thriller", "Romance", "Historical Fiction", "Horror", "Adventure", "Drama", "Comedy"], label="Input Genre") | |
| output_text = gr.Textbox(label="Generated Story",lines=8) | |
| gr.Interface( | |
| fn=generate_story, | |
| inputs=[input_image, input_theme, input_genre], | |
| outputs=output_text, | |
| title="Image to Story Generator", | |
| description="Generate a story from an image taking theme and genre as input.", | |
| ).launch() |