Spaces:
Runtime error
Runtime error
init
Browse files- app.py +171 -0
- obama.webm +0 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Thanks to nateraw for making this scape happen!
|
3 |
+
This code has been mostly taken from https://huggingface.co/spaces/nateraw/animegan-v2-for-videos/tree/main
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
os.system("wget https://github.com/Sxela/ArcaneGAN/releases/download/v0.3/ArcaneGANv0.3.jit")
|
7 |
+
|
8 |
+
import sys
|
9 |
+
from subprocess import call
|
10 |
+
def run_cmd(command):
|
11 |
+
try:
|
12 |
+
print(command)
|
13 |
+
call(command, shell=True)
|
14 |
+
except KeyboardInterrupt:
|
15 |
+
print("Process interrupted")
|
16 |
+
sys.exit(1)
|
17 |
+
|
18 |
+
print("⬇️ Installing latest gradio==2.4.7b9")
|
19 |
+
run_cmd("pip install --upgrade pip")
|
20 |
+
run_cmd('pip install gradio==2.4.7b9')
|
21 |
+
|
22 |
+
import gc
|
23 |
+
import math
|
24 |
+
|
25 |
+
|
26 |
+
import gradio as gr
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from encoded_video import EncodedVideo, write_video
|
30 |
+
from PIL import Image
|
31 |
+
from torchvision.transforms.functional import center_crop, to_tensor
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
print("🧠 Loading Model...")
|
37 |
+
model = torch.jit.load('ArcaneGANv0.3.jit').cuda().eval().half()
|
38 |
+
|
39 |
+
# This function is taken from pytorchvideo!
|
40 |
+
def uniform_temporal_subsample(x: torch.Tensor, num_samples: int, temporal_dim: int = -3) -> torch.Tensor:
|
41 |
+
"""
|
42 |
+
Uniformly subsamples num_samples indices from the temporal dimension of the video.
|
43 |
+
When num_samples is larger than the size of temporal dimension of the video, it
|
44 |
+
will sample frames based on nearest neighbor interpolation.
|
45 |
+
Args:
|
46 |
+
x (torch.Tensor): A video tensor with dimension larger than one with torch
|
47 |
+
tensor type includes int, long, float, complex, etc.
|
48 |
+
num_samples (int): The number of equispaced samples to be selected
|
49 |
+
temporal_dim (int): dimension of temporal to perform temporal subsample.
|
50 |
+
Returns:
|
51 |
+
An x-like Tensor with subsampled temporal dimension.
|
52 |
+
"""
|
53 |
+
t = x.shape[temporal_dim]
|
54 |
+
assert num_samples > 0 and t > 0
|
55 |
+
# Sample by nearest neighbor interpolation if num_samples > t.
|
56 |
+
indices = torch.linspace(0, t - 1, num_samples)
|
57 |
+
indices = torch.clamp(indices, 0, t - 1).long()
|
58 |
+
return torch.index_select(x, temporal_dim, indices)
|
59 |
+
|
60 |
+
|
61 |
+
# This function is taken from pytorchvideo!
|
62 |
+
def short_side_scale(
|
63 |
+
x: torch.Tensor,
|
64 |
+
size: int,
|
65 |
+
interpolation: str = "bilinear",
|
66 |
+
) -> torch.Tensor:
|
67 |
+
"""
|
68 |
+
Determines the shorter spatial dim of the video (i.e. width or height) and scales
|
69 |
+
it to the given size. To maintain aspect ratio, the longer side is then scaled
|
70 |
+
accordingly.
|
71 |
+
Args:
|
72 |
+
x (torch.Tensor): A video tensor of shape (C, T, H, W) and type torch.float32.
|
73 |
+
size (int): The size the shorter side is scaled to.
|
74 |
+
interpolation (str): Algorithm used for upsampling,
|
75 |
+
options: nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' | 'area'
|
76 |
+
Returns:
|
77 |
+
An x-like Tensor with scaled spatial dims.
|
78 |
+
"""
|
79 |
+
assert len(x.shape) == 4
|
80 |
+
assert x.dtype == torch.float32
|
81 |
+
c, t, h, w = x.shape
|
82 |
+
if w < h:
|
83 |
+
new_h = int(math.floor((float(h) / w) * size))
|
84 |
+
new_w = size
|
85 |
+
else:
|
86 |
+
new_h = size
|
87 |
+
new_w = int(math.floor((float(w) / h) * size))
|
88 |
+
|
89 |
+
return torch.nn.functional.interpolate(x, size=(new_h, new_w), mode=interpolation, align_corners=False)
|
90 |
+
|
91 |
+
means = [0.485, 0.456, 0.406]
|
92 |
+
stds = [0.229, 0.224, 0.225]
|
93 |
+
|
94 |
+
from torchvision import transforms
|
95 |
+
norm = transforms.Normalize(means,stds)
|
96 |
+
|
97 |
+
norms = torch.tensor(means)[None,:,None,None].cuda()
|
98 |
+
stds = torch.tensor(stds)[None,:,None,None].cuda()
|
99 |
+
|
100 |
+
def inference_step(vid, start_sec, duration, out_fps):
|
101 |
+
clip = vid.get_clip(start_sec, start_sec + duration)
|
102 |
+
video_arr = torch.from_numpy(clip['video']).permute(3, 0, 1, 2)
|
103 |
+
audio_arr = np.expand_dims(clip['audio'], 0)
|
104 |
+
audio_fps = None if not vid._has_audio else vid._container.streams.audio[0].sample_rate
|
105 |
+
|
106 |
+
x = uniform_temporal_subsample(video_arr, duration * out_fps)
|
107 |
+
x = center_crop(short_side_scale(x, 512), 512)
|
108 |
+
x /= 255.
|
109 |
+
x = x.permute(1, 0, 2, 3)
|
110 |
+
x = norm(x)
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
output = model(x.to('cuda').half())
|
114 |
+
output = (output * stds + norms).clip(0, 1) * 255.
|
115 |
+
|
116 |
+
output_video = output.permute(0, 2, 3, 1).float().detach().cpu().numpy()
|
117 |
+
|
118 |
+
return output_video, audio_arr, out_fps, audio_fps
|
119 |
+
|
120 |
+
|
121 |
+
def predict_fn(filepath, start_sec, duration, out_fps):
|
122 |
+
# out_fps=12
|
123 |
+
vid = EncodedVideo.from_path(filepath)
|
124 |
+
for i in range(duration):
|
125 |
+
video, audio, fps, audio_fps = inference_step(
|
126 |
+
vid = vid,
|
127 |
+
start_sec = i + start_sec,
|
128 |
+
duration = 1,
|
129 |
+
out_fps = out_fps
|
130 |
+
)
|
131 |
+
gc.collect()
|
132 |
+
if i == 0:
|
133 |
+
video_all = video
|
134 |
+
audio_all = audio
|
135 |
+
else:
|
136 |
+
video_all = np.concatenate((video_all, video))
|
137 |
+
audio_all = np.hstack((audio_all, audio))
|
138 |
+
|
139 |
+
write_video(
|
140 |
+
'out.mp4',
|
141 |
+
video_all,
|
142 |
+
fps=fps,
|
143 |
+
audio_array=audio_all,
|
144 |
+
audio_fps=audio_fps,
|
145 |
+
audio_codec='aac'
|
146 |
+
)
|
147 |
+
|
148 |
+
del video_all
|
149 |
+
del audio_all
|
150 |
+
|
151 |
+
return 'out.mp4'
|
152 |
+
|
153 |
+
|
154 |
+
title = "ArcaneGAN"
|
155 |
+
description = "Gradio demo for ArcaneGAN, video to Arcane style. To use it, simply upload your video, or click one of the examples to load them. Follow <a href='https://twitter.com/devdef' target='_blank'>Alex Spirin</a> for more info and updates."
|
156 |
+
article = "<div style='text-align: center;'>ArcaneGan by <a href='https://twitter.com/devdef' target='_blank'>Alex Spirin</a> | <a href='https://github.com/Sxela/ArcaneGAN' target='_blank'>Github Repo</a> | <center><img src='https://visitor-badge.glitch.me/badge?page_id=sxela_arcanegan_video_hf' alt='visitor badge'></center></div>"
|
157 |
+
|
158 |
+
|
159 |
+
gr.Interface(
|
160 |
+
predict_fn,
|
161 |
+
inputs=[gr.inputs.Video(), gr.inputs.Slider(minimum=0, maximum=300, step=1, default=0), gr.inputs.Slider(minimum=1, maximum=10, step=1, default=2), gr.inputs.Slider(minimum=12, maximum=30, step=6, default=24)],
|
162 |
+
outputs=gr.outputs.Video(),
|
163 |
+
title='ArcaneGAN On Videos',
|
164 |
+
description="Applying ArcaneGAN to frame from video clips",
|
165 |
+
article = article,
|
166 |
+
enable_queue=True,
|
167 |
+
examples=[
|
168 |
+
['obama.webm', 23, 10, 30],
|
169 |
+
],
|
170 |
+
allow_flagging=False
|
171 |
+
).launch()
|
obama.webm
ADDED
Binary file (1.21 MB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
Pillow
|
5 |
+
gdown
|
6 |
+
numpy
|
7 |
+
scipy
|
8 |
+
opencv-python-headless
|
9 |
+
encoded-video
|