Apekshik Panigrahi commited on
Commit
5207ca0
·
1 Parent(s): 653ec63

Added basic Bart fine tuning logic

Browse files
Files changed (3) hide show
  1. Dockerfile +14 -0
  2. bart-run.py +82 -0
  3. requirements.txt +4 -0
Dockerfile ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
+ # you will also find guides on how best to write your Dockerfile
3
+
4
+ FROM python:3.9
5
+
6
+ WORKDIR /code
7
+
8
+ COPY ./requirements.txt /code/requirements.txt
9
+
10
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
11
+
12
+ COPY . .
13
+
14
+ CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
bart-run.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Loading the Data.
3
+ import torch
4
+ import pandas as pd
5
+ from transformers import BartTokenizer, BartForSequenceClassification
6
+
7
+ # Set device
8
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
+
10
+ # Load data from names.csv
11
+ # train_data_full = pd.read_csv('names_balanced_train.csv',header=None,names=["name","country"])
12
+ # test_data = pd.read_csv('names_balanced_test.csv',header=None,names=["name","country"])
13
+
14
+ joke_data = pd.read_csv('jokes.csv', sep='|', names=["joke", "label"], skiprows=1)
15
+ noJoke_data = pd.read_csv('not_jokes.csv', sep='|', names=["joke", "label"], skiprows=1)
16
+ frames = [joke_data, noJoke_data]
17
+ train_data = pd.concat(frames)
18
+
19
+ test_data = pd.read_csv('test_jokes.csv', sep='|', names=["joke", "label"], skiprows=1)
20
+
21
+ numCategories = 2
22
+ tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
23
+ model = BartForSequenceClassification.from_pretrained('facebook/bart-large', num_labels=numCategories)
24
+ model = model.to(device)
25
+
26
+ # Convert country column to one-hot encoding
27
+ one_hot_train = pd.get_dummies(train_data['label'])
28
+ one_hot_test = pd.get_dummies(test_data['label'])
29
+
30
+ # Tokenize names and convert to PyTorch dataset
31
+ inputs_train = tokenizer(list(train_data['joke']), return_tensors='pt', padding=True)
32
+ labels_train = torch.tensor(one_hot_train.values, dtype=torch.float32)
33
+ dataset_train = torch.utils.data.TensorDataset(inputs_train['input_ids'], inputs_train['attention_mask'], labels_train)
34
+ inputs_test = tokenizer(list(test_data['joke']), return_tensors='pt', padding=True)
35
+ labels_test = torch.tensor(one_hot_test.values, dtype=torch.float32)
36
+ dataset_test = torch.utils.data.TensorDataset(inputs_test['input_ids'], inputs_test['attention_mask'], labels_test)
37
+
38
+
39
+ # Define training parameters
40
+ epochs = 10
41
+ batch_size = 32
42
+ learning_rate = 1e-5
43
+
44
+ # Train model
45
+ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
46
+ data_loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True)
47
+ data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=batch_size)
48
+
49
+ print(f"\nTraining on {len(train_data)} examples\n")
50
+ print("Num. Parameters:", sum(p.numel() for p in model.parameters() if p.requires_grad))
51
+
52
+ for epoch in range(epochs):
53
+ # Compute average loss after 100 steps
54
+ avg_loss = 0
55
+ for step, batch in enumerate(data_loader_train):
56
+ input_ids, attention_mask, labels = batch
57
+ input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
58
+ outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
59
+ loss = outputs[0]
60
+ avg_loss += loss.item()
61
+ if step % 100 == 0:
62
+ print(f"Step {step}/{len(data_loader_train)} Loss {loss} Avg Train Loss {avg_loss / (step + 1)}")
63
+ optimizer.zero_grad()
64
+ loss.backward()
65
+ optimizer.step()
66
+ loss = avg_loss / len(data_loader_train)
67
+ # Print loss after every epoch
68
+ print(f"Epoch {epoch+1} Test Loss {loss}")
69
+ # Compute accuracy after every epoch
70
+ correct = 0
71
+ total = 0
72
+ for step, batch in enumerate(data_loader_test):
73
+ input_ids, attention_mask, labels = batch
74
+ input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
75
+ outputs = model(input_ids, attention_mask=attention_mask)
76
+ predicted = torch.argmax(outputs[0], dim=1)
77
+ total += labels.size(0)
78
+ correct += (predicted == torch.argmax(labels, dim=1)).sum().item()
79
+ print(f"Test Accuracy {100*correct/total}%\n")
80
+
81
+ # Save model
82
+ model.save_pretrained('fine-tuned-bart_countries')
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ transformers==4.12.0
2
+ torch==1.8.2
3
+ pandas==1.3.3
4
+ numpy==1.21.2