Chatbot / app.py
aparnavellala's picture
Update app.py
4265073 verified
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("microsoft/phi-2")
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in messages:
print(message)
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
from typing import Annotated, Sequence, TypedDict
import operator
import functools
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import create_openai_tools_agent
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph import StateGraph, END
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# SETUP: HuggingFace Model and Pipeline
#name = "meta-llama/Llama-3.2-1B"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
#name="deepseek-ai/deepseek-llm-7b-chat"
#name="openai-community/gpt2"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
#name="microsoft/Phi-3.5-mini-instruct"
name="Qwen/Qwen2.5-7B-Instruct-1M"
tokenizer = AutoTokenizer.from_pretrained(name,truncation=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(name)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_new_tokens=500, # text to generate for outputs
)
print ("pipeline is created")
# Wrap in LangChain's HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)
# Members and Final Options
members = ["Researcher", "Coder"]
options = ["FINISH"] + members
# Supervisor prompt
system_prompt = (
"You are a supervisor tasked with managing a conversation between the following workers: {members}."
" Given the following user request, respond with the workers to act next. Each worker will perform a task"
" and respond with their results and status. When all workers are finished, respond with FINISH."
)
# Prompt template required for the workflow
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
("system", "Given the conversation above, who should act next? Or Should we FINISH? Select one of: {options}"),
]
).partial(options=str(options), members=", ".join(members))
print ("Prompt Template created")
# Supervisor routing logic
def route_tool_response(llm_response: str) -> str:
"""
Parse the LLM response to determine the next step based on routing logic.
Handles unexpected or poorly structured responses gracefully.
"""
# Normalize the LLM response
#llm_response = llm_response.strip().lower() # Strip whitespace and make lowercase
# Remove any prefixes like "Assistant:" or "System:"
# if ":" in llm_response:
# llm_response = llm_response.split(":")[-1].strip()
# Check for "finish" or worker names in the response
for member in members:
#if member.lower() in llm_response:
if member in llm_response:
return member
if "finish" in llm_response:
return "FINISH"
# If no valid response is found, return a fallback error
return "Invalid"
def supervisor_chain(state):
"""
Supervisor logic to interact with HuggingFacePipeline and decide the next worker.
"""
messages = state.get("messages", [])
try:
# Construct prompt for the supervisor
user_prompt = prompt.format(messages=messages)
# Generate the LLM's response
llm_response = pipe(user_prompt, max_new_tokens=100)[0]["generated_text"]
print(f"[DEBUG] LLM Response: {llm_response.strip()}") # Log LLM raw output
# Route the response to determine the next action
next_action = route_tool_response(llm_response)
# Validate the next action
if next_action not in options:
raise ValueError(f"Invalid next action: '{next_action}'. Expected one of {options}.")
# # Initialize intermediate_steps if not already present
# if "intermediate_steps" not in state:
# state["intermediate_steps"] = []
# # Append the supervisor decision to intermediate_steps
# state["intermediate_steps"].append(
# {"supervisor": "decision", "next_action": next_action}
# )
print(f"[DEBUG] Next action decided: {next_action}") # Log decision
return {"next": next_action, "messages": messages}
# return {"next": next_action, "messages": messages, "intermediate_steps": state["intermediate_steps"]}
except Exception as e:
print(f"[ERROR] Supervisor chain failed: {e}")
raise RuntimeError(f"Supervisor logic error: {str(e)}")
# AgentState definition
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
next: str
# Create tools
tavily_tool = TavilySearchResults(max_results=5)
python_repl_tool = PythonREPLTool()
# Create agents with their respective prompts
research_agent = create_openai_tools_agent(
llm=llm,
tools=[tavily_tool],
prompt=ChatPromptTemplate.from_messages(
[
SystemMessage(content="You are a web researcher."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"), # Add required placeholder
]
),
)
print ("Created agents with their respective prompts")
code_agent = create_openai_tools_agent(
llm=llm,
tools=[python_repl_tool],
prompt=ChatPromptTemplate.from_messages(
[
SystemMessage(content="You may generate safe Python code for analysis."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"), # Add required placeholder
]
),
)
print ("create_openai_tools_agent")
# Create the workflow
workflow = StateGraph(AgentState)
# Nodes
workflow.add_node("Researcher", research_agent) # Pass the agent directly (no .run required)
workflow.add_node("Coder", code_agent) # Pass the agent directly
workflow.add_node("supervisor", supervisor_chain)
# Add edges for workflow transitions
for member in members:
workflow.add_edge(member, "supervisor")
#workflow.add_conditional_edges(
# "supervisor",
# lambda x: x["next"],
# {k: k for k in members} | {"FINISH": END} # Dynamically map workers to their actions
#)
workflow.add_conditional_edges(
"supervisor",
lambda x: x["next"],
{"Researcher":"Researcher","Coder":"Coder","FINISH": END}
)
print("[DEBUG] Workflow edges added: supervisor -> members/FINISH based on 'next'")
# Define entry point
workflow.set_entry_point("supervisor")
print(workflow)
# Compile the workflow
graph = workflow.compile()
from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))
# Properly formatted initial state
initial_state = {
"messages": [
#HumanMessage(content="Code hello world and print it to the terminal.") # Correct format for user input
HumanMessage(content="Write Code for printing \"hello world\" in Python. Keep it precise.") # Correct format for user input
]
# ,
# "intermediate_steps": [] # Add this to track progress if needed
}
# Properly formatted second test state
second_test = {
"messages": [
HumanMessage(content="How is the weather in Sanfrancisco and Bangalore? Give research results") # Correct format for user input
]
# ,
# "intermediate_steps": [] # Add this to track progress if needed
}
if __name__ == "__main__":
#demo.launch()
# Execute the workflow
try:
#print(f"[TRACE] Initial workflow state: {initial_state}")
#result = graph.invoke(initial_state)
#print("[INFO] Workflow Execution Complete.")
#print(f"[TRACE] Workflow Result: {result}") # Final workflow result
print(f"[TRACE] Initial workflow state: {second_test}")
result2 = graph.invoke(second_test)
print("[INFO] Workflow Execution Complete.")
print(f"[TRACE] Workflow Result: {result2}") # Final workflow result
except Exception as e:
print(f"[ERROR] Workflow execution failed: {e}")