Spaces:
Runtime error
Runtime error
import torch | |
from modules import devices | |
module_in_gpu = None | |
cpu = torch.device("cpu") | |
def send_everything_to_cpu(): | |
global module_in_gpu | |
if module_in_gpu is not None: | |
module_in_gpu.to(cpu) | |
module_in_gpu = None | |
def setup_for_low_vram(sd_model, use_medvram): | |
parents = {} | |
def send_me_to_gpu(module, _): | |
"""send this module to GPU; send whatever tracked module was previous in GPU to CPU; | |
we add this as forward_pre_hook to a lot of modules and this way all but one of them will | |
be in CPU | |
""" | |
global module_in_gpu | |
module = parents.get(module, module) | |
if module_in_gpu == module: | |
return | |
if module_in_gpu is not None: | |
module_in_gpu.to(cpu) | |
module.to(devices.device) | |
module_in_gpu = module | |
# see below for register_forward_pre_hook; | |
# first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is | |
# useless here, and we just replace those methods | |
first_stage_model = sd_model.first_stage_model | |
first_stage_model_encode = sd_model.first_stage_model.encode | |
first_stage_model_decode = sd_model.first_stage_model.decode | |
def first_stage_model_encode_wrap(x): | |
send_me_to_gpu(first_stage_model, None) | |
return first_stage_model_encode(x) | |
def first_stage_model_decode_wrap(z): | |
send_me_to_gpu(first_stage_model, None) | |
return first_stage_model_decode(z) | |
# for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field | |
if hasattr(sd_model.cond_stage_model, 'model'): | |
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model | |
# remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then | |
# send the model to GPU. Then put modules back. the modules will be in CPU. | |
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model | |
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None | |
sd_model.to(devices.device) | |
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored | |
# register hooks for those the first three models | |
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu) | |
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu) | |
sd_model.first_stage_model.encode = first_stage_model_encode_wrap | |
sd_model.first_stage_model.decode = first_stage_model_decode_wrap | |
if sd_model.depth_model: | |
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu) | |
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model | |
if hasattr(sd_model.cond_stage_model, 'model'): | |
sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer | |
del sd_model.cond_stage_model.transformer | |
if use_medvram: | |
sd_model.model.register_forward_pre_hook(send_me_to_gpu) | |
else: | |
diff_model = sd_model.model.diffusion_model | |
# the third remaining model is still too big for 4 GB, so we also do the same for its submodules | |
# so that only one of them is in GPU at a time | |
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed | |
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None | |
sd_model.model.to(devices.device) | |
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored | |
# install hooks for bits of third model | |
diff_model.time_embed.register_forward_pre_hook(send_me_to_gpu) | |
for block in diff_model.input_blocks: | |
block.register_forward_pre_hook(send_me_to_gpu) | |
diff_model.middle_block.register_forward_pre_hook(send_me_to_gpu) | |
for block in diff_model.output_blocks: | |
block.register_forward_pre_hook(send_me_to_gpu) | |