Spaces:
Runtime error
Runtime error
import os, cv2 | |
import torch | |
from pathlib import Path | |
from multiprocessing import freeze_support | |
def extract_frames(input_video_path, output_imgs_path): | |
# Open the video file | |
vidcap = cv2.VideoCapture(input_video_path) | |
# Get the total number of frames in the video | |
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
# Create the output directory if it does not exist | |
if not os.path.exists(output_imgs_path): | |
os.makedirs(output_imgs_path) | |
# Extract the frames | |
for i in range(frame_count): | |
success, image = vidcap.read() | |
if success: | |
cv2.imwrite(os.path.join(output_imgs_path, f"frame{i}.png"), image) | |
print(f"{frame_count} frames extracted and saved to {output_imgs_path}") | |
def video2humanmasks(input_frames_path, output_folder_path, output_type, fps): | |
# freeze support is needed for video outputting | |
freeze_support() | |
# check if input path exists and is a directory | |
if not os.path.exists(input_frames_path) or not os.path.isdir(input_frames_path): | |
raise ValueError("Invalid input path: {}".format(input_frames_path)) | |
# check if output path exists and is a directory | |
if not os.path.exists(output_folder_path) or not os.path.isdir(output_folder_path): | |
raise ValueError("Invalid output path: {}".format(output_folder_path)) | |
# check if output_type is valid | |
valid_output_types = ["video", "pngs", "both"] | |
if output_type.lower() not in valid_output_types: | |
raise ValueError("Invalid output type: {}. Must be one of {}".format(output_type, valid_output_types)) | |
# try to predict where torch cache lives, so we can try and fetch models from cache in the next step | |
predicted_torch_model_cache_path = os.path.join(Path.home(), ".cache", "torch", "hub", "hithereai_RobustVideoMatting_master") | |
predicted_rvm_cache_testilfe = os.path.join(predicted_torch_model_cache_path, "hubconf.py") | |
# try to fetch the models from cache, and only if it can't be find, download from the internet (to enable offline usage) | |
try: | |
# Try to fetch the models from cache | |
convert_video = torch.hub.load(predicted_torch_model_cache_path, "converter", source='local') | |
model = torch.hub.load(predicted_torch_model_cache_path, "mobilenetv3", source='local').cuda() | |
except: | |
# Download from the internet if not found in cache | |
convert_video = torch.hub.load("hithereai/RobustVideoMatting", "converter") | |
model = torch.hub.load("hithereai/RobustVideoMatting", "mobilenetv3").cuda() | |
output_alpha_vid_path = os.path.join(output_folder_path, "human_masked_video.mp4") | |
# extract humans masks from the input folder' imgs. | |
# in this step PNGs will be extracted only if output_type is set to PNGs. Otherwise a video will be made, and in the case of Both, the video will be extracted in the next step to PNGs | |
convert_video( | |
model, | |
input_source=input_frames_path, # full path of the folder that contains all of the extracted input imgs | |
output_type='video' if output_type.upper() in ("VIDEO", "BOTH") else 'png_sequence', | |
output_alpha=output_alpha_vid_path if output_type.upper() in ("VIDEO", "BOTH") else output_folder_path, | |
output_video_mbps=4, | |
output_video_fps=fps, | |
downsample_ratio=None, # None for auto | |
seq_chunk=12, # Process n frames at once for better parallelism | |
progress=True # show extraction progress | |
) | |
if output_type.lower() == "both": | |
extract_frames(output_alpha_vid_path, output_folder_path) | |