Spaces:
Runtime error
Runtime error
import re | |
from collections import namedtuple | |
from typing import List | |
import lark | |
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]" | |
# will be represented with prompt_schedule like this (assuming steps=100): | |
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy'] | |
# [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy'] | |
# [60, 'fantasy landscape with a lake and an oak in foreground in background masterful'] | |
# [75, 'fantasy landscape with a lake and an oak in background masterful'] | |
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful'] | |
schedule_parser = lark.Lark(r""" | |
!start: (prompt | /[][():]/+)* | |
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)* | |
!emphasized: "(" prompt ")" | |
| "(" prompt ":" prompt ")" | |
| "[" prompt "]" | |
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]" | |
alternate: "[" prompt ("|" prompt)+ "]" | |
WHITESPACE: /\s+/ | |
plain: /([^\\\[\]():|]|\\.)+/ | |
%import common.SIGNED_NUMBER -> NUMBER | |
""") | |
def get_learned_conditioning_prompt_schedules(prompts, steps): | |
""" | |
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0] | |
>>> g("test") | |
[[10, 'test']] | |
>>> g("a [b:3]") | |
[[3, 'a '], [10, 'a b']] | |
>>> g("a [b: 3]") | |
[[3, 'a '], [10, 'a b']] | |
>>> g("a [[[b]]:2]") | |
[[2, 'a '], [10, 'a [[b]]']] | |
>>> g("[(a:2):3]") | |
[[3, ''], [10, '(a:2)']] | |
>>> g("a [b : c : 1] d") | |
[[1, 'a b d'], [10, 'a c d']] | |
>>> g("a[b:[c:d:2]:1]e") | |
[[1, 'abe'], [2, 'ace'], [10, 'ade']] | |
>>> g("a [unbalanced") | |
[[10, 'a [unbalanced']] | |
>>> g("a [b:.5] c") | |
[[5, 'a c'], [10, 'a b c']] | |
>>> g("a [{b|d{:.5] c") # not handling this right now | |
[[5, 'a c'], [10, 'a {b|d{ c']] | |
>>> g("((a][:b:c [d:3]") | |
[[3, '((a][:b:c '], [10, '((a][:b:c d']] | |
>>> g("[a|(b:1.1)]") | |
[[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']] | |
""" | |
def collect_steps(steps, tree): | |
l = [steps] | |
class CollectSteps(lark.Visitor): | |
def scheduled(self, tree): | |
tree.children[-1] = float(tree.children[-1]) | |
if tree.children[-1] < 1: | |
tree.children[-1] *= steps | |
tree.children[-1] = min(steps, int(tree.children[-1])) | |
l.append(tree.children[-1]) | |
def alternate(self, tree): | |
l.extend(range(1, steps+1)) | |
CollectSteps().visit(tree) | |
return sorted(set(l)) | |
def at_step(step, tree): | |
class AtStep(lark.Transformer): | |
def scheduled(self, args): | |
before, after, _, when = args | |
yield before or () if step <= when else after | |
def alternate(self, args): | |
yield next(args[(step - 1)%len(args)]) | |
def start(self, args): | |
def flatten(x): | |
if type(x) == str: | |
yield x | |
else: | |
for gen in x: | |
yield from flatten(gen) | |
return ''.join(flatten(args)) | |
def plain(self, args): | |
yield args[0].value | |
def __default__(self, data, children, meta): | |
for child in children: | |
yield child | |
return AtStep().transform(tree) | |
def get_schedule(prompt): | |
try: | |
tree = schedule_parser.parse(prompt) | |
except lark.exceptions.LarkError as e: | |
if 0: | |
import traceback | |
traceback.print_exc() | |
return [[steps, prompt]] | |
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)] | |
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)} | |
return [promptdict[prompt] for prompt in prompts] | |
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"]) | |
def get_learned_conditioning(model, prompts, steps): | |
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond), | |
and the sampling step at which this condition is to be replaced by the next one. | |
Input: | |
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20) | |
Output: | |
[ | |
[ | |
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0')) | |
], | |
[ | |
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')), | |
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0')) | |
] | |
] | |
""" | |
res = [] | |
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps) | |
cache = {} | |
for prompt, prompt_schedule in zip(prompts, prompt_schedules): | |
cached = cache.get(prompt, None) | |
if cached is not None: | |
res.append(cached) | |
continue | |
texts = [x[1] for x in prompt_schedule] | |
conds = model.get_learned_conditioning(texts) | |
cond_schedule = [] | |
for i, (end_at_step, text) in enumerate(prompt_schedule): | |
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i])) | |
cache[prompt] = cond_schedule | |
res.append(cond_schedule) | |
return res | |
re_AND = re.compile(r"\bAND\b") | |
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$") | |
def get_multicond_prompt_list(prompts): | |
res_indexes = [] | |
prompt_flat_list = [] | |
prompt_indexes = {} | |
for prompt in prompts: | |
subprompts = re_AND.split(prompt) | |
indexes = [] | |
for subprompt in subprompts: | |
match = re_weight.search(subprompt) | |
text, weight = match.groups() if match is not None else (subprompt, 1.0) | |
weight = float(weight) if weight is not None else 1.0 | |
index = prompt_indexes.get(text, None) | |
if index is None: | |
index = len(prompt_flat_list) | |
prompt_flat_list.append(text) | |
prompt_indexes[text] = index | |
indexes.append((index, weight)) | |
res_indexes.append(indexes) | |
return res_indexes, prompt_flat_list, prompt_indexes | |
class ComposableScheduledPromptConditioning: | |
def __init__(self, schedules, weight=1.0): | |
self.schedules: List[ScheduledPromptConditioning] = schedules | |
self.weight: float = weight | |
class MulticondLearnedConditioning: | |
def __init__(self, shape, batch): | |
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS | |
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch | |
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning: | |
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt. | |
For each prompt, the list is obtained by splitting the prompt using the AND separator. | |
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/ | |
""" | |
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts) | |
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps) | |
res = [] | |
for indexes in res_indexes: | |
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes]) | |
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res) | |
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step): | |
param = c[0][0].cond | |
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) | |
for i, cond_schedule in enumerate(c): | |
target_index = 0 | |
for current, (end_at, cond) in enumerate(cond_schedule): | |
if current_step <= end_at: | |
target_index = current | |
break | |
res[i] = cond_schedule[target_index].cond | |
return res | |
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): | |
param = c.batch[0][0].schedules[0].cond | |
tensors = [] | |
conds_list = [] | |
for batch_no, composable_prompts in enumerate(c.batch): | |
conds_for_batch = [] | |
for cond_index, composable_prompt in enumerate(composable_prompts): | |
target_index = 0 | |
for current, (end_at, cond) in enumerate(composable_prompt.schedules): | |
if current_step <= end_at: | |
target_index = current | |
break | |
conds_for_batch.append((len(tensors), composable_prompt.weight)) | |
tensors.append(composable_prompt.schedules[target_index].cond) | |
conds_list.append(conds_for_batch) | |
# if prompts have wildly different lengths above the limit we'll get tensors fo different shapes | |
# and won't be able to torch.stack them. So this fixes that. | |
token_count = max([x.shape[0] for x in tensors]) | |
for i in range(len(tensors)): | |
if tensors[i].shape[0] != token_count: | |
last_vector = tensors[i][-1:] | |
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1]) | |
tensors[i] = torch.vstack([tensors[i], last_vector_repeated]) | |
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype) | |
re_attention = re.compile(r""" | |
\\\(| | |
\\\)| | |
\\\[| | |
\\]| | |
\\\\| | |
\\| | |
\(| | |
\[| | |
:([+-]?[.\d]+)\)| | |
\)| | |
]| | |
[^\\()\[\]:]+| | |
: | |
""", re.X) | |
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) | |
def parse_prompt_attention(text): | |
""" | |
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
Accepted tokens are: | |
(abc) - increases attention to abc by a multiplier of 1.1 | |
(abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
[abc] - decreases attention to abc by a multiplier of 1.1 | |
\( - literal character '(' | |
\[ - literal character '[' | |
\) - literal character ')' | |
\] - literal character ']' | |
\\ - literal character '\' | |
anything else - just text | |
>>> parse_prompt_attention('normal text') | |
[['normal text', 1.0]] | |
>>> parse_prompt_attention('an (important) word') | |
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
>>> parse_prompt_attention('(unbalanced') | |
[['unbalanced', 1.1]] | |
>>> parse_prompt_attention('\(literal\]') | |
[['(literal]', 1.0]] | |
>>> parse_prompt_attention('(unnecessary)(parens)') | |
[['unnecessaryparens', 1.1]] | |
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
[['a ', 1.0], | |
['house', 1.5730000000000004], | |
[' ', 1.1], | |
['on', 1.0], | |
[' a ', 1.1], | |
['hill', 0.55], | |
[', sun, ', 1.1], | |
['sky', 1.4641000000000006], | |
['.', 1.1]] | |
""" | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith('\\'): | |
res.append([text[1:], 1.0]) | |
elif text == '(': | |
round_brackets.append(len(res)) | |
elif text == '[': | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ')' and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == ']' and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
parts = re.split(re_break, text) | |
for i, part in enumerate(parts): | |
if i > 0: | |
res.append(["BREAK", -1]) | |
res.append([part, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [["", 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |
if __name__ == "__main__": | |
import doctest | |
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE) | |
else: | |
import torch # doctest faster | |