Spaces:
Runtime error
Runtime error
import inspect | |
from pydantic import BaseModel, Field, create_model | |
from typing import Any, Optional | |
from typing_extensions import Literal | |
from inflection import underscore | |
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img | |
from modules.shared import sd_upscalers, opts, parser | |
from typing import Dict, List | |
API_NOT_ALLOWED = [ | |
"self", | |
"kwargs", | |
"sd_model", | |
"outpath_samples", | |
"outpath_grids", | |
"sampler_index", | |
"do_not_save_samples", | |
"do_not_save_grid", | |
"extra_generation_params", | |
"overlay_images", | |
"do_not_reload_embeddings", | |
"seed_enable_extras", | |
"prompt_for_display", | |
"sampler_noise_scheduler_override", | |
"ddim_discretize" | |
] | |
class ModelDef(BaseModel): | |
"""Assistance Class for Pydantic Dynamic Model Generation""" | |
field: str | |
field_alias: str | |
field_type: Any | |
field_value: Any | |
field_exclude: bool = False | |
class PydanticModelGenerator: | |
""" | |
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: | |
source_data is a snapshot of the default values produced by the class | |
params are the names of the actual keys required by __init__ | |
""" | |
def __init__( | |
self, | |
model_name: str = None, | |
class_instance = None, | |
additional_fields = None, | |
): | |
def field_type_generator(k, v): | |
# field_type = str if not overrides.get(k) else overrides[k]["type"] | |
# print(k, v.annotation, v.default) | |
field_type = v.annotation | |
return Optional[field_type] | |
def merge_class_params(class_): | |
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) | |
parameters = {} | |
for classes in all_classes: | |
parameters = {**parameters, **inspect.signature(classes.__init__).parameters} | |
return parameters | |
self._model_name = model_name | |
self._class_data = merge_class_params(class_instance) | |
self._model_def = [ | |
ModelDef( | |
field=underscore(k), | |
field_alias=k, | |
field_type=field_type_generator(k, v), | |
field_value=v.default | |
) | |
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED | |
] | |
for fields in additional_fields: | |
self._model_def.append(ModelDef( | |
field=underscore(fields["key"]), | |
field_alias=fields["key"], | |
field_type=fields["type"], | |
field_value=fields["default"], | |
field_exclude=fields["exclude"] if "exclude" in fields else False)) | |
def generate_model(self): | |
""" | |
Creates a pydantic BaseModel | |
from the json and overrides provided at initialization | |
""" | |
fields = { | |
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def | |
} | |
DynamicModel = create_model(self._model_name, **fields) | |
DynamicModel.__config__.allow_population_by_field_name = True | |
DynamicModel.__config__.allow_mutation = True | |
return DynamicModel | |
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( | |
"StableDiffusionProcessingTxt2Img", | |
StableDiffusionProcessingTxt2Img, | |
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] | |
).generate_model() | |
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( | |
"StableDiffusionProcessingImg2Img", | |
StableDiffusionProcessingImg2Img, | |
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] | |
).generate_model() | |
class TextToImageResponse(BaseModel): | |
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") | |
parameters: dict | |
info: str | |
class ImageToImageResponse(BaseModel): | |
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") | |
parameters: dict | |
info: str | |
class ExtrasBaseRequest(BaseModel): | |
resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.") | |
show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?") | |
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") | |
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") | |
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") | |
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.") | |
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") | |
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") | |
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?") | |
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") | |
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") | |
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.") | |
upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?") | |
class ExtraBaseResponse(BaseModel): | |
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.") | |
class ExtrasSingleImageRequest(ExtrasBaseRequest): | |
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") | |
class ExtrasSingleImageResponse(ExtraBaseResponse): | |
image: str = Field(default=None, title="Image", description="The generated image in base64 format.") | |
class FileData(BaseModel): | |
data: str = Field(title="File data", description="Base64 representation of the file") | |
name: str = Field(title="File name") | |
class ExtrasBatchImagesRequest(ExtrasBaseRequest): | |
imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings") | |
class ExtrasBatchImagesResponse(ExtraBaseResponse): | |
images: List[str] = Field(title="Images", description="The generated images in base64 format.") | |
class PNGInfoRequest(BaseModel): | |
image: str = Field(title="Image", description="The base64 encoded PNG image") | |
class PNGInfoResponse(BaseModel): | |
info: str = Field(title="Image info", description="A string with the parameters used to generate the image") | |
items: dict = Field(title="Items", description="An object containing all the info the image had") | |
class ProgressRequest(BaseModel): | |
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization") | |
class ProgressResponse(BaseModel): | |
progress: float = Field(title="Progress", description="The progress with a range of 0 to 1") | |
eta_relative: float = Field(title="ETA in secs") | |
state: dict = Field(title="State", description="The current state snapshot") | |
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.") | |
textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.") | |
class InterrogateRequest(BaseModel): | |
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") | |
model: str = Field(default="clip", title="Model", description="The interrogate model used.") | |
class InterrogateResponse(BaseModel): | |
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.") | |
class TrainResponse(BaseModel): | |
info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.") | |
class CreateResponse(BaseModel): | |
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.") | |
class PreprocessResponse(BaseModel): | |
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.") | |
fields = {} | |
for key, metadata in opts.data_labels.items(): | |
value = opts.data.get(key) | |
optType = opts.typemap.get(type(metadata.default), type(value)) | |
if (metadata is not None): | |
fields.update({key: (Optional[optType], Field( | |
default=metadata.default ,description=metadata.label))}) | |
else: | |
fields.update({key: (Optional[optType], Field())}) | |
OptionsModel = create_model("Options", **fields) | |
flags = {} | |
_options = vars(parser)['_option_string_actions'] | |
for key in _options: | |
if(_options[key].dest != 'help'): | |
flag = _options[key] | |
_type = str | |
if _options[key].default is not None: _type = type(_options[key].default) | |
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))}) | |
FlagsModel = create_model("Flags", **flags) | |
class SamplerItem(BaseModel): | |
name: str = Field(title="Name") | |
aliases: List[str] = Field(title="Aliases") | |
options: Dict[str, str] = Field(title="Options") | |
class UpscalerItem(BaseModel): | |
name: str = Field(title="Name") | |
model_name: Optional[str] = Field(title="Model Name") | |
model_path: Optional[str] = Field(title="Path") | |
model_url: Optional[str] = Field(title="URL") | |
scale: Optional[float] = Field(title="Scale") | |
class SDModelItem(BaseModel): | |
title: str = Field(title="Title") | |
model_name: str = Field(title="Model Name") | |
hash: Optional[str] = Field(title="Short hash") | |
sha256: Optional[str] = Field(title="sha256 hash") | |
filename: str = Field(title="Filename") | |
config: Optional[str] = Field(title="Config file") | |
class HypernetworkItem(BaseModel): | |
name: str = Field(title="Name") | |
path: Optional[str] = Field(title="Path") | |
class FaceRestorerItem(BaseModel): | |
name: str = Field(title="Name") | |
cmd_dir: Optional[str] = Field(title="Path") | |
class RealesrganItem(BaseModel): | |
name: str = Field(title="Name") | |
path: Optional[str] = Field(title="Path") | |
scale: Optional[int] = Field(title="Scale") | |
class PromptStyleItem(BaseModel): | |
name: str = Field(title="Name") | |
prompt: Optional[str] = Field(title="Prompt") | |
negative_prompt: Optional[str] = Field(title="Negative Prompt") | |
class ArtistItem(BaseModel): | |
name: str = Field(title="Name") | |
score: float = Field(title="Score") | |
category: str = Field(title="Category") | |
class EmbeddingItem(BaseModel): | |
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available") | |
sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available") | |
sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead") | |
shape: int = Field(title="Shape", description="The length of each individual vector in the embedding") | |
vectors: int = Field(title="Vectors", description="The number of vectors in the embedding") | |
class EmbeddingsResponse(BaseModel): | |
loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") | |
skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") | |
class MemoryResponse(BaseModel): | |
ram: dict = Field(title="RAM", description="System memory stats") | |
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats") | |