Spaces:
Runtime error
Runtime error
from diffusers import AutoencoderKL, UNet2DConditionModel | |
from diffusers import StableDiffusionPipeline | |
from diffusers import StableDiffusionImg2ImgPipeline | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import utils | |
is_colab = utils.is_google_colab() | |
class Model: | |
def __init__(self, name, path, prefix): | |
self.name = name | |
self.path = path | |
self.prefix = prefix | |
models = [ | |
Model("Custom model", "", ""), | |
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "), | |
Model("Archer", "nitrosocke/archer-diffusion", "archer style "), | |
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "), | |
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "), | |
Model("Modern Disney", "nitrosocke/modern-disney-diffusion", "modern disney style "), | |
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", ""), | |
Model("Waifu", "hakurei/waifu-diffusion", ""), | |
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""), | |
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""), | |
Model("Robo Diffusion", "nousr/robo-diffusion", ""), | |
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "), | |
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy") | |
] | |
last_mode = "txt2img" | |
current_model = models[1] | |
current_model_path = current_model.path | |
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16) | |
# pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
# pipe_i2i = pipe_i2i.to("cuda") | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
def custom_model_changed(path): | |
models[0].path = path | |
global current_model | |
current_model = models[0] | |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""): | |
global current_model | |
for model in models: | |
if model.name == model_name: | |
current_model = model | |
model_path = current_model.path | |
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None | |
if img is not None: | |
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator) | |
else: | |
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator) | |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None): | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "txt2img": | |
current_model_path = model_path | |
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
last_mode = "txt2img" | |
prompt = current_model.prefix + prompt | |
result = pipe( | |
prompt, | |
negative_prompt = neg_prompt, | |
# num_images_per_prompt=n_images, | |
num_inference_steps = int(steps), | |
guidance_scale = guidance, | |
width = width, | |
height = height, | |
generator = generator) | |
return replace_nsfw_images(result) | |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None): | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "img2img": | |
current_model_path = model_path | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
last_mode = "img2img" | |
prompt = current_model.prefix + prompt | |
ratio = min(height / img.height, width / img.width) | |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) | |
result = pipe( | |
prompt, | |
negative_prompt = neg_prompt, | |
# num_images_per_prompt=n_images, | |
init_image = img, | |
num_inference_steps = int(steps), | |
strength = strength, | |
guidance_scale = guidance, | |
width = width, | |
height = height, | |
generator = generator) | |
return replace_nsfw_images(result) | |
def replace_nsfw_images(results): | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images[0] | |
css = """ | |
<style> | |
.finetuned-diffusion-div { | |
text-align: center; | |
max-width: 700px; | |
margin: 0 auto; | |
} | |
.finetuned-diffusion-div div { | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
} | |
.finetuned-diffusion-div div h1 { | |
font-weight: 900; | |
margin-bottom: 7px; | |
} | |
.finetuned-diffusion-div p { | |
margin-bottom: 10px; | |
font-size: 94%; | |
} | |
.finetuned-diffusion-div p a { | |
text-decoration: underline; | |
} | |
.tabs { | |
margin-top: 0px; | |
margin-bottom: 0px; | |
} | |
#gallery { | |
min-height: 20rem; | |
} | |
</style> | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Finetuned Diffusion</h1> | |
</div> | |
<p> | |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br> | |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗. | |
</p> | |
<p>Don't want to wait in queue? <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p> | |
Running on <b>{device}</b> | |
</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Group(): | |
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name) | |
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", visible=False, interactive=True) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False) | |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) | |
image_out = gr.Image(height=512) | |
# gallery = gr.Gallery( | |
# label="Generated images", show_label=False, elem_id="gallery" | |
# ).style(grid=[1], height="auto") | |
with gr.Tab("Options"): | |
with gr.Group(): | |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") | |
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1) | |
with gr.Row(): | |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) | |
steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=100, step=1) | |
with gr.Row(): | |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) | |
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) | |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
with gr.Tab("Image to image"): | |
with gr.Group(): | |
image = gr.Image(label="Image", height=256, tool="editor", type="pil") | |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) | |
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_path) | |
custom_model_path.change(custom_model_changed, inputs=custom_model_path) | |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery) | |
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt] | |
prompt.submit(inference, inputs=inputs, outputs=image_out) | |
generate.click(inference, inputs=inputs, outputs=image_out) | |
ex = gr.Examples([ | |
[models[1].name, "jason bateman disassembling the demon core", 7.5, 50], | |
[models[4].name, "portrait of dwayne johnson", 7.0, 75], | |
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 50], | |
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 45], | |
[models[5].name, "fantasy portrait painting, digital art", 4.0, 30], | |
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=not is_colab and torch.cuda.is_available()) | |
# ex.dataset.headers = [""] | |
gr.Markdown(''' | |
Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br> | |
Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe) | |
![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion) | |
''') | |
if not is_colab: | |
demo.queue(concurrency_count=4) | |
demo.launch(debug=is_colab, share=is_colab) |