anyantudre commited on
Commit
ca6951f
1 Parent(s): f2e201e

Update goai_tts.py

Browse files
Files changed (1) hide show
  1. goai_tts.py +8 -10
goai_tts.py CHANGED
@@ -1,11 +1,7 @@
1
- import torch
2
- import scipy
3
  import time
4
  import numpy as np
5
- from transformers import set_seed, pipeline
6
-
7
- device = 0 if torch.cuda.is_available() else "cpu"
8
-
9
 
10
  def goai_tts(texte):
11
  """
@@ -18,7 +14,7 @@ def goai_tts(texte):
18
 
19
  Return
20
  ------
21
- L'audio synthétisé.
22
  """
23
 
24
  ### assurer la reproductibilité
@@ -28,12 +24,14 @@ def goai_tts(texte):
28
 
29
  ### charger le modèle TTS
30
  model_id = "anyantudre/mms-tts-mos-V1"
31
- synthesiser = pipeline("text-to-speech", model_id, device=device) # add device=0 if you want to use a GPU
32
 
33
  ### inférence
34
  speech = synthesiser(texte)
35
- wavfile = scipy.io.wavfile.write("finetuned_output.wav", rate=speech["sampling_rate"], data=speech["audio"][0])
 
 
36
 
37
  print("Temps écoulé: ", int(time.time() - start_time), " secondes")
38
 
39
- return np.array(wavfile[1], dtype=float)
 
 
 
1
  import time
2
  import numpy as np
3
+ import scipy.io.wavfile
4
+ from transformers import pipeline, set_seed
 
 
5
 
6
  def goai_tts(texte):
7
  """
 
14
 
15
  Return
16
  ------
17
+ Un tuple contenant le taux d'échantillonnage et les données audio sous forme de tableau numpy.
18
  """
19
 
20
  ### assurer la reproductibilité
 
24
 
25
  ### charger le modèle TTS
26
  model_id = "anyantudre/mms-tts-mos-V1"
27
+ synthesiser = pipeline("text-to-speech", model_id, device=device)
28
 
29
  ### inférence
30
  speech = synthesiser(texte)
31
+
32
+ sample_rate = speech["sampling_rate"]
33
+ audio_data = np.array(speech["audio"][0], dtype=float)
34
 
35
  print("Temps écoulé: ", int(time.time() - start_time), " secondes")
36
 
37
+ return sample_rate, audio_data