Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
st.set_page_config('preguntaDOC') | |
st.header("Pregunta a tu PDF") | |
OPENAI_API_KEY = st.text_input('OpenAI API Key', type='password') | |
pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear) | |
def create_embeddings(pdf): | |
pdf_reader = PdfReader(pdf) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=800, | |
chunk_overlap=100, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") | |
knowledge_base = FAISS.from_texts(chunks, embeddings) | |
return knowledge_base | |
if pdf_obj: | |
knowledge_base = create_embeddings(pdf_obj) | |
user_question = st.text_input("Haz una pregunta sobre tu PDF:") | |
if user_question: | |
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY | |
docs = knowledge_base.similarity_search(user_question, 3) | |
llm = ChatOpenAI(model_name='gpt-3.5-turbo') | |
chain = load_qa_chain(llm, chain_type="stuff") | |
respuesta = chain.run(input_documents=docs, question=user_question) | |
st.write(respuesta) |