Metric3D_GPU / mono /utils /transform.py
JUGGHM's picture
Upload 62 files
8a32844
raw
history blame
17.5 kB
import collections
import cv2
import math
import numpy as np
import numbers
import random
import torch
import matplotlib
import matplotlib.cm
"""
Provides a set of Pytorch transforms that use OpenCV instead of PIL (Pytorch default)
for image manipulation.
"""
class Compose(object):
# Composes transforms: transforms.Compose([transforms.RandScale([0.5, 2.0]), transforms.ToTensor()])
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
for t in self.transforms:
images, labels, intrinsics, cam_models, other_labels, transform_paras = t(images, labels, intrinsics, cam_models, other_labels, transform_paras)
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class ToTensor(object):
# Converts numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W).
def __init__(self, **kwargs):
return
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
if not isinstance(images, list) or not isinstance(labels, list) or not isinstance(intrinsics, list):
raise (RuntimeError("transform.ToTensor() only handle inputs/labels/intrinsics lists."))
if len(images) != len(intrinsics):
raise (RuntimeError("Numbers of images and intrinsics are not matched."))
if not isinstance(images[0], np.ndarray) or not isinstance(labels[0], np.ndarray):
raise (RuntimeError("transform.ToTensor() only handle np.ndarray for the input and label."
"[eg: data readed by cv2.imread()].\n"))
if not isinstance(intrinsics[0], list):
raise (RuntimeError("transform.ToTensor() only handle list for the camera intrinsics"))
if len(images[0].shape) > 3 or len(images[0].shape) < 2:
raise (RuntimeError("transform.ToTensor() only handle image(np.ndarray) with 3 dims or 2 dims.\n"))
if len(labels[0].shape) > 3 or len(labels[0].shape) < 2:
raise (RuntimeError("transform.ToTensor() only handle label(np.ndarray) with 3 dims or 2 dims.\n"))
if len(intrinsics[0]) >4 or len(intrinsics[0]) < 3:
raise (RuntimeError("transform.ToTensor() only handle intrinsic(list) with 3 sizes or 4 sizes.\n"))
for i, img in enumerate(images):
if len(img.shape) == 2:
img = np.expand_dims(img, axis=2)
images[i] = torch.from_numpy(img.transpose((2, 0, 1))).float()
for i, lab in enumerate(labels):
if len(lab.shape) == 2:
lab = np.expand_dims(lab, axis=0)
labels[i] = torch.from_numpy(lab).float()
for i, intrinsic in enumerate(intrinsics):
if len(intrinsic) == 3:
intrinsic = [intrinsic[0],] + intrinsic
intrinsics[i] = torch.tensor(intrinsic, dtype=torch.float)
if cam_models is not None:
for i, cam_model in enumerate(cam_models):
cam_models[i] = torch.from_numpy(cam_model.transpose((2, 0, 1))).float() if cam_model is not None else None
if other_labels is not None:
for i, lab in enumerate(other_labels):
if len(lab.shape) == 2:
lab = np.expand_dims(lab, axis=0)
other_labels[i] = torch.from_numpy(lab).float()
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class Normalize(object):
# Normalize tensor with mean and standard deviation along channel: channel = (channel - mean) / std
def __init__(self, mean, std=None, **kwargs):
if std is None:
assert len(mean) > 0
else:
assert len(mean) == len(std)
self.mean = torch.tensor(mean).float()[:, None, None]
self.std = torch.tensor(std).float()[:, None, None] if std is not None \
else torch.tensor([1.0, 1.0, 1.0]).float()[:, None, None]
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
# if self.std is None:
# # for t, m in zip(image, self.mean):
# # t.sub(m)
# image = image - self.mean
# if ref_images is not None:
# for i, ref_i in enumerate(ref_images):
# ref_images[i] = ref_i - self.mean
# else:
# # for t, m, s in zip(image, self.mean, self.std):
# # t.sub(m).div(s)
# image = (image - self.mean) / self.std
# if ref_images is not None:
# for i, ref_i in enumerate(ref_images):
# ref_images[i] = (ref_i - self.mean) / self.std
for i, img in enumerate(images):
img = torch.div((img - self.mean), self.std)
images[i] = img
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class LableScaleCanonical(object):
"""
To solve the ambiguity observation for the mono branch, i.e. different focal length (object size) with the same depth, cameras are
mapped to a canonical space. To mimic this, we set the focal length to a canonical one and scale the depth value. NOTE: resize the image based on the ratio can also solve
Args:
images: list of RGB images.
labels: list of depth/disparity labels.
other labels: other labels, such as instance segmentations, semantic segmentations...
"""
def __init__(self, **kwargs):
self.canonical_focal = kwargs['focal_length']
def _get_scale_ratio(self, intrinsic):
target_focal_x = intrinsic[0]
label_scale_ratio = self.canonical_focal / target_focal_x
pose_scale_ratio = 1.0
return label_scale_ratio, pose_scale_ratio
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
assert len(images[0].shape) == 3 and len(labels[0].shape) == 2
assert labels[0].dtype == np.float32
label_scale_ratio = None
pose_scale_ratio = None
for i in range(len(intrinsics)):
img_i = images[i]
label_i = labels[i] if i < len(labels) else None
intrinsic_i = intrinsics[i].copy()
cam_model_i = cam_models[i] if cam_models is not None and i < len(cam_models) else None
label_scale_ratio, pose_scale_ratio = self._get_scale_ratio(intrinsic_i)
# adjust the focal length, map the current camera to the canonical space
intrinsics[i] = [intrinsic_i[0] * label_scale_ratio, intrinsic_i[1] * label_scale_ratio, intrinsic_i[2], intrinsic_i[3]]
# scale the label to the canonical space
if label_i is not None:
labels[i] = label_i * label_scale_ratio
if cam_model_i is not None:
# As the focal length is adjusted (canonical focal length), the camera model should be re-built
ori_h, ori_w, _ = img_i.shape
cam_models[i] = build_camera_model(ori_h, ori_w, intrinsics[i])
if transform_paras is not None:
transform_paras.update(label_scale_factor=label_scale_ratio, focal_scale_factor=label_scale_ratio)
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class ResizeKeepRatio(object):
"""
Resize and pad to a given size. Hold the aspect ratio.
This resizing assumes that the camera model remains unchanged.
Args:
resize_size: predefined output size.
"""
def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs):
if isinstance(resize_size, int):
self.resize_h = resize_size
self.resize_w = resize_size
elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \
and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \
and resize_size[0] > 0 and resize_size[1] > 0:
self.resize_h = resize_size[0]
self.resize_w = resize_size[1]
else:
raise (RuntimeError("crop size error.\n"))
if padding is None:
self.padding = padding
elif isinstance(padding, list):
if all(isinstance(i, numbers.Number) for i in padding):
self.padding = padding
else:
raise (RuntimeError("padding in Crop() should be a number list\n"))
if len(padding) != 3:
raise (RuntimeError("padding channel is not equal with 3\n"))
else:
raise (RuntimeError("padding in Crop() should be a number list\n"))
if isinstance(ignore_label, int):
self.ignore_label = ignore_label
else:
raise (RuntimeError("ignore_label should be an integer number\n"))
# self.crop_size = kwargs['crop_size']
self.canonical_focal = kwargs['focal_length']
def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio):
"""
Resize data first and then do the padding.
'label' will be scaled.
"""
h, w, _ = image.shape
reshape_h = int(resize_ratio * h)
reshape_w = int(resize_ratio * w)
pad_h, pad_w, pad_h_half, pad_w_half = padding
# resize
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
# padding
image = cv2.copyMakeBorder(
image,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=self.padding)
if label is not None:
# label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
label = resize_depth_preserve(label, (reshape_h, reshape_w))
label = cv2.copyMakeBorder(
label,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=self.ignore_label)
# scale the label
label = label / to_scale_ratio
# Resize, adjust principle point
if intrinsic is not None:
intrinsic[0] = intrinsic[0] * resize_ratio / to_scale_ratio
intrinsic[1] = intrinsic[1] * resize_ratio / to_scale_ratio
intrinsic[2] = intrinsic[2] * resize_ratio
intrinsic[3] = intrinsic[3] * resize_ratio
if cam_model is not None:
#cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
cam_model = cv2.copyMakeBorder(
cam_model,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=self.ignore_label)
# Pad, adjust the principle point
if intrinsic is not None:
intrinsic[2] = intrinsic[2] + pad_w_half
intrinsic[3] = intrinsic[3] + pad_h_half
return image, label, intrinsic, cam_model
def get_label_scale_factor(self, image, intrinsic, resize_ratio):
ori_h, ori_w, _ = image.shape
# crop_h, crop_w = self.crop_size
ori_focal = intrinsic[0]
to_canonical_ratio = self.canonical_focal / ori_focal
to_scale_ratio = resize_ratio / to_canonical_ratio
return to_scale_ratio
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
target_h, target_w, _ = images[0].shape
resize_ratio_h = self.resize_h / target_h
resize_ratio_w = self.resize_w / target_w
resize_ratio = min(resize_ratio_h, resize_ratio_w)
reshape_h = int(resize_ratio * target_h)
reshape_w = int(resize_ratio * target_w)
pad_h = max(self.resize_h - reshape_h, 0)
pad_w = max(self.resize_w - reshape_w, 0)
pad_h_half = int(pad_h / 2)
pad_w_half = int(pad_w / 2)
pad_info = [pad_h, pad_w, pad_h_half, pad_w_half]
to_scale_ratio = self.get_label_scale_factor(images[0], intrinsics[0], resize_ratio)
for i in range(len(images)):
img = images[i]
label = labels[i] if i < len(labels) else None
intrinsic = intrinsics[i] if i < len(intrinsics) else None
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
img, label, intrinsic, cam_model = self.main_data_transform(
img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio)
images[i] = img
if label is not None:
labels[i] = label
if intrinsic is not None:
intrinsics[i] = intrinsic
if cam_model is not None:
cam_models[i] = cam_model
if other_labels is not None:
for i, other_lab in enumerate(other_labels):
# resize
other_lab = cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
# pad
other_labels[i] = cv2.copyMakeBorder(
other_lab,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=self.ignore_label)
pad = [pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
if transform_paras is not None:
pad_old = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
new_pad = [pad_old[0] + pad[0], pad_old[1] + pad[1], pad_old[2] + pad[2], pad_old[3] + pad[3]]
transform_paras.update(dict(pad=new_pad))
if 'label_scale_factor' in transform_paras:
transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio
else:
transform_paras.update(label_scale_factor=1.0/to_scale_ratio)
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class BGR2RGB(object):
# Converts image from BGR order to RGB order, for model initialized from Pytorch
def __init__(self, **kwargs):
return
def __call__(self, images, labels, intrinsics, cam_models=None,other_labels=None, transform_paras=None):
for i, img in enumerate(images):
images[i] = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return images, labels, intrinsics, cam_models, other_labels, transform_paras
def resize_depth_preserve(depth, shape):
"""
Resizes depth map preserving all valid depth pixels
Multiple downsampled points can be assigned to the same pixel.
Parameters
----------
depth : np.array [h,w]
Depth map
shape : tuple (H,W)
Output shape
Returns
-------
depth : np.array [H,W,1]
Resized depth map
"""
# Store dimensions and reshapes to single column
depth = np.squeeze(depth)
h, w = depth.shape
x = depth.reshape(-1)
# Create coordinate grid
uv = np.mgrid[:h, :w].transpose(1, 2, 0).reshape(-1, 2)
# Filters valid points
idx = x > 0
crd, val = uv[idx], x[idx]
# Downsamples coordinates
crd[:, 0] = (crd[:, 0] * (shape[0] / h) + 0.5).astype(np.int32)
crd[:, 1] = (crd[:, 1] * (shape[1] / w) + 0.5).astype(np.int32)
# Filters points inside image
idx = (crd[:, 0] < shape[0]) & (crd[:, 1] < shape[1])
crd, val = crd[idx], val[idx]
# Creates downsampled depth image and assigns points
depth = np.zeros(shape)
depth[crd[:, 0], crd[:, 1]] = val
# Return resized depth map
return depth
def build_camera_model(H : int, W : int, intrinsics : list) -> np.array:
"""
Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map.
"""
fx, fy, u0, v0 = intrinsics
f = (fx + fy) / 2.0
# principle point location
x_row = np.arange(0, W).astype(np.float32)
x_row_center_norm = (x_row - u0) / W
x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W]
y_col = np.arange(0, H).astype(np.float32)
y_col_center_norm = (y_col - v0) / H
y_center = np.tile(y_col_center_norm, (W, 1)).T
# FoV
fov_x = np.arctan(x_center / (f / W))
fov_y = np.arctan(y_center/ (f / H))
cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2)
return cam_model
def gray_to_colormap(img, cmap='rainbow'):
"""
Transfer gray map to matplotlib colormap
"""
assert img.ndim == 2
img[img<0] = 0
mask_invalid = img < 1e-10
img = img / (img.max() + 1e-8)
norm = matplotlib.colors.Normalize(vmin=0, vmax=1.1)
cmap_m = matplotlib.cm.get_cmap(cmap)
map = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap_m)
colormap = (map.to_rgba(img)[:, :, :3] * 255).astype(np.uint8)
colormap[mask_invalid] = 0
return colormap