en-hi-transliteration / xlit_src.py
anuragshas's picture
Initial Commit
f2874d4
raw history blame
No virus
30.1 kB
import torch
import torch.nn as nn
import numpy as np
import random
import enum
import traceback
import os
import sys
import json
F_DIR = os.path.dirname(os.path.realpath(__file__))
class XlitError(enum.Enum):
lang_err = "Unsupported langauge ID requested ;( Please check available languages."
string_err = "String passed is incompatable ;("
internal_err = "Internal crash ;("
unknown_err = "Unknown Failure"
loading_err = "Loading failed ;( Check if metadata/paths are correctly configured."
class Encoder(nn.Module):
"""
Simple RNN based encoder network
"""
def __init__(
self,
input_dim,
embed_dim,
hidden_dim,
rnn_type="gru",
layers=1,
bidirectional=False,
dropout=0,
device="cpu",
):
super(Encoder, self).__init__()
self.input_dim = input_dim # src_vocab_sz
self.enc_embed_dim = embed_dim
self.enc_hidden_dim = hidden_dim
self.enc_rnn_type = rnn_type
self.enc_layers = layers
self.enc_directions = 2 if bidirectional else 1
self.device = device
self.embedding = nn.Embedding(self.input_dim, self.enc_embed_dim)
if self.enc_rnn_type == "gru":
self.enc_rnn = nn.GRU(
input_size=self.enc_embed_dim,
hidden_size=self.enc_hidden_dim,
num_layers=self.enc_layers,
bidirectional=bidirectional,
)
elif self.enc_rnn_type == "lstm":
self.enc_rnn = nn.LSTM(
input_size=self.enc_embed_dim,
hidden_size=self.enc_hidden_dim,
num_layers=self.enc_layers,
bidirectional=bidirectional,
)
else:
raise Exception("unknown RNN type mentioned")
def forward(self, x, x_sz, hidden=None):
"""
x_sz: (batch_size, 1) - Unpadded sequence lengths used for pack_pad
Return:
output: (batch_size, max_length, hidden_dim)
hidden: (n_layer*num_directions, batch_size, hidden_dim) | if LSTM tuple -(h_n, c_n)
"""
batch_sz = x.shape[0]
# x: batch_size, max_length, enc_embed_dim
x = self.embedding(x)
## pack the padded data
# x: max_length, batch_size, enc_embed_dim -> for pack_pad
x = x.permute(1, 0, 2)
x = nn.utils.rnn.pack_padded_sequence(x, x_sz, enforce_sorted=False) # unpad
# output: packed_size, batch_size, enc_embed_dim --> hidden from all timesteps
# hidden: n_layer**num_directions, batch_size, hidden_dim | if LSTM (h_n, c_n)
output, hidden = self.enc_rnn(x)
## pad the sequence to the max length in the batch
# output: max_length, batch_size, enc_emb_dim*directions)
output, _ = nn.utils.rnn.pad_packed_sequence(output)
# output: batch_size, max_length, hidden_dim
output = output.permute(1, 0, 2)
return output, hidden
class Decoder(nn.Module):
"""
Used as decoder stage
"""
def __init__(
self,
output_dim,
embed_dim,
hidden_dim,
rnn_type="gru",
layers=1,
use_attention=True,
enc_outstate_dim=None, # enc_directions * enc_hidden_dim
dropout=0,
device="cpu",
):
super(Decoder, self).__init__()
self.output_dim = output_dim # tgt_vocab_sz
self.dec_hidden_dim = hidden_dim
self.dec_embed_dim = embed_dim
self.dec_rnn_type = rnn_type
self.dec_layers = layers
self.use_attention = use_attention
self.device = device
if self.use_attention:
self.enc_outstate_dim = enc_outstate_dim if enc_outstate_dim else hidden_dim
else:
self.enc_outstate_dim = 0
self.embedding = nn.Embedding(self.output_dim, self.dec_embed_dim)
if self.dec_rnn_type == "gru":
self.dec_rnn = nn.GRU(
input_size=self.dec_embed_dim
+ self.enc_outstate_dim, # to concat attention_output
hidden_size=self.dec_hidden_dim, # previous Hidden
num_layers=self.dec_layers,
batch_first=True,
)
elif self.dec_rnn_type == "lstm":
self.dec_rnn = nn.LSTM(
input_size=self.dec_embed_dim
+ self.enc_outstate_dim, # to concat attention_output
hidden_size=self.dec_hidden_dim, # previous Hidden
num_layers=self.dec_layers,
batch_first=True,
)
else:
raise Exception("unknown RNN type mentioned")
self.fc = nn.Sequential(
nn.Linear(self.dec_hidden_dim, self.dec_embed_dim),
nn.LeakyReLU(),
# nn.Linear(self.dec_embed_dim, self.dec_embed_dim), nn.LeakyReLU(), # removing to reduce size
nn.Linear(self.dec_embed_dim, self.output_dim),
)
##----- Attention ----------
if self.use_attention:
self.W1 = nn.Linear(self.enc_outstate_dim, self.dec_hidden_dim)
self.W2 = nn.Linear(self.dec_hidden_dim, self.dec_hidden_dim)
self.V = nn.Linear(self.dec_hidden_dim, 1)
def attention(self, x, hidden, enc_output):
"""
x: (batch_size, 1, dec_embed_dim) -> after Embedding
enc_output: batch_size, max_length, enc_hidden_dim *num_directions
hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
"""
## perform addition to calculate the score
# hidden_with_time_axis: batch_size, 1, hidden_dim
## hidden_with_time_axis = hidden.permute(1, 0, 2) ## replaced with below 2lines
hidden_with_time_axis = torch.sum(hidden, axis=0)
hidden_with_time_axis = hidden_with_time_axis.unsqueeze(1)
# score: batch_size, max_length, hidden_dim
score = torch.tanh(self.W1(enc_output) + self.W2(hidden_with_time_axis))
# attention_weights: batch_size, max_length, 1
# we get 1 at the last axis because we are applying score to self.V
attention_weights = torch.softmax(self.V(score), dim=1)
# context_vector shape after sum == (batch_size, hidden_dim)
context_vector = attention_weights * enc_output
context_vector = torch.sum(context_vector, dim=1)
# context_vector: batch_size, 1, hidden_dim
context_vector = context_vector.unsqueeze(1)
# attend_out (batch_size, 1, dec_embed_dim + hidden_size)
attend_out = torch.cat((context_vector, x), -1)
return attend_out, attention_weights
def forward(self, x, hidden, enc_output):
"""
x: (batch_size, 1)
enc_output: batch_size, max_length, dec_embed_dim
hidden: n_layer, batch_size, hidden_size | lstm: (h_n, c_n)
"""
if (hidden is None) and (self.use_attention is False):
raise Exception("No use of a decoder with No attention and No Hidden")
batch_sz = x.shape[0]
if hidden is None:
# hidden: n_layers, batch_size, hidden_dim
hid_for_att = torch.zeros(
(self.dec_layers, batch_sz, self.dec_hidden_dim)
).to(self.device)
elif self.dec_rnn_type == "lstm":
hid_for_att = hidden[0] # h_n
else:
hid_for_att = hidden
# x (batch_size, 1, dec_embed_dim) -> after embedding
x = self.embedding(x)
if self.use_attention:
# x (batch_size, 1, dec_embed_dim + hidden_size) -> after attention
# aw: (batch_size, max_length, 1)
x, aw = self.attention(x, hid_for_att, enc_output)
else:
x, aw = x, 0
# passing the concatenated vector to the GRU
# output: (batch_size, n_layers, hidden_size)
# hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
output, hidden = (
self.dec_rnn(x, hidden) if hidden is not None else self.dec_rnn(x)
)
# output :shp: (batch_size * 1, hidden_size)
output = output.view(-1, output.size(2))
# output :shp: (batch_size * 1, output_dim)
output = self.fc(output)
return output, hidden, aw
class Seq2Seq(nn.Module):
"""
Used to construct seq2seq architecture with encoder decoder objects
"""
def __init__(
self, encoder, decoder, pass_enc2dec_hid=False, dropout=0, device="cpu"
):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
self.pass_enc2dec_hid = pass_enc2dec_hid
if self.pass_enc2dec_hid:
assert (
decoder.dec_hidden_dim == encoder.enc_hidden_dim
), "Hidden Dimension of encoder and decoder must be same, or unset `pass_enc2dec_hid`"
if decoder.use_attention:
assert (
decoder.enc_outstate_dim
== encoder.enc_directions * encoder.enc_hidden_dim
), "Set `enc_out_dim` correctly in decoder"
assert (
self.pass_enc2dec_hid or decoder.use_attention
), "No use of a decoder with No attention and No Hidden from Encoder"
def forward(self, src, tgt, src_sz, teacher_forcing_ratio=0):
"""
src: (batch_size, sequence_len.padded)
tgt: (batch_size, sequence_len.padded)
src_sz: [batch_size, 1] - Unpadded sequence lengths
"""
batch_size = tgt.shape[0]
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
enc_output, enc_hidden = self.encoder(src, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
dec_hidden = None
# pred_vecs: (batch_size, output_dim, sequence_sz) -> shape required for CELoss
pred_vecs = torch.zeros(batch_size, self.decoder.output_dim, tgt.size(1)).to(
self.device
)
# dec_input: (batch_size, 1)
dec_input = tgt[:, 0].unsqueeze(1) # initialize to start token
pred_vecs[:, 1, 0] = 1 # Initialize to start tokens all batches
for t in range(1, tgt.size(1)):
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
# dec_output: batch_size, output_dim
# dec_input: (batch_size, 1)
dec_output, dec_hidden, _ = self.decoder(
dec_input,
dec_hidden,
enc_output,
)
pred_vecs[:, :, t] = dec_output
# # prediction: batch_size
prediction = torch.argmax(dec_output, dim=1)
# Teacher Forcing
if random.random() < teacher_forcing_ratio:
dec_input = tgt[:, t].unsqueeze(1)
else:
dec_input = prediction.unsqueeze(1)
return pred_vecs # (batch_size, output_dim, sequence_sz)
def inference(self, src, max_tgt_sz=50, debug=0):
"""
single input only, No batch Inferencing
src: (sequence_len)
debug: if True will return attention weights also
"""
batch_size = 1
start_tok = src[0]
end_tok = src[-1]
src_sz = torch.tensor([len(src)])
src_ = src.unsqueeze(0)
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
enc_output, enc_hidden = self.encoder(src_, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
dec_hidden = None
# pred_arr: (sequence_sz, 1) -> shape required for CELoss
pred_arr = torch.zeros(max_tgt_sz, 1).to(self.device)
if debug:
attend_weight_arr = torch.zeros(max_tgt_sz, len(src)).to(self.device)
# dec_input: (batch_size, 1)
dec_input = start_tok.view(1, 1) # initialize to start token
pred_arr[0] = start_tok.view(1, 1) # initialize to start token
for t in range(max_tgt_sz):
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
# dec_output: batch_size, output_dim
# dec_input: (batch_size, 1)
dec_output, dec_hidden, aw = self.decoder(
dec_input,
dec_hidden,
enc_output,
)
# prediction :shp: (1,1)
prediction = torch.argmax(dec_output, dim=1)
dec_input = prediction.unsqueeze(1)
pred_arr[t] = prediction
if debug:
attend_weight_arr[t] = aw.squeeze(-1)
if torch.eq(prediction, end_tok):
break
if debug:
return pred_arr.squeeze(), attend_weight_arr
# pred_arr :shp: (sequence_len)
return pred_arr.squeeze().to(dtype=torch.long)
def active_beam_inference(self, src, beam_width=3, max_tgt_sz=50):
"""Active beam Search based decoding
src: (sequence_len)
"""
def _avg_score(p_tup):
"""Used for Sorting
TODO: Dividing by length of sequence power alpha as hyperparam
"""
return p_tup[0]
batch_size = 1
start_tok = src[0]
end_tok = src[-1]
src_sz = torch.tensor([len(src)])
src_ = src.unsqueeze(0)
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
enc_output, enc_hidden = self.encoder(src_, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
init_dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
init_dec_hidden = None
# top_pred[][0] = Σ-log_softmax
# top_pred[][1] = sequence torch.tensor shape: (1)
# top_pred[][2] = dec_hidden
top_pred_list = [(0, start_tok.unsqueeze(0), init_dec_hidden)]
for t in range(max_tgt_sz):
cur_pred_list = []
for p_tup in top_pred_list:
if p_tup[1][-1] == end_tok:
cur_pred_list.append(p_tup)
continue
# dec_hidden: dec_layers, 1, hidden_dim
# dec_output: 1, output_dim
dec_output, dec_hidden, _ = self.decoder(
x=p_tup[1][-1].view(1, 1), # dec_input: (1,1)
hidden=p_tup[2],
enc_output=enc_output,
)
## π{prob} = Σ{log(prob)} -> to prevent diminishing
# dec_output: (1, output_dim)
dec_output = nn.functional.log_softmax(dec_output, dim=1)
# pred_topk.values & pred_topk.indices: (1, beam_width)
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
for i in range(beam_width):
sig_logsmx_ = p_tup[0] + pred_topk.values[0][i]
# seq_tensor_ : (seq_len)
seq_tensor_ = torch.cat((p_tup[1], pred_topk.indices[0][i].view(1)))
cur_pred_list.append((sig_logsmx_, seq_tensor_, dec_hidden))
cur_pred_list.sort(key=_avg_score, reverse=True) # Maximized order
top_pred_list = cur_pred_list[:beam_width]
# check if end_tok of all topk
end_flags_ = [1 if t[1][-1] == end_tok else 0 for t in top_pred_list]
if beam_width == sum(end_flags_):
break
pred_tnsr_list = [t[1] for t in top_pred_list]
return pred_tnsr_list
def passive_beam_inference(self, src, beam_width=7, max_tgt_sz=50):
"""
Passive Beam search based inference
src: (sequence_len)
"""
def _avg_score(p_tup):
"""Used for Sorting
TODO: Dividing by length of sequence power alpha as hyperparam
"""
return p_tup[0]
def _beam_search_topk(topk_obj, start_tok, beam_width):
"""search for sequence with maxim prob
topk_obj[x]: .values & .indices shape:(1, beam_width)
"""
# top_pred_list[x]: tuple(prob, seq_tensor)
top_pred_list = [
(0, start_tok.unsqueeze(0)),
]
for obj in topk_obj:
new_lst_ = list()
for itm in top_pred_list:
for i in range(beam_width):
sig_logsmx_ = itm[0] + obj.values[0][i]
seq_tensor_ = torch.cat((itm[1], obj.indices[0][i].view(1)))
new_lst_.append((sig_logsmx_, seq_tensor_))
new_lst_.sort(key=_avg_score, reverse=True)
top_pred_list = new_lst_[:beam_width]
return top_pred_list
batch_size = 1
start_tok = src[0]
end_tok = src[-1]
src_sz = torch.tensor([len(src)])
src_ = src.unsqueeze(0)
enc_output, enc_hidden = self.encoder(src_, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
dec_hidden = None
# dec_input: (1, 1)
dec_input = start_tok.view(1, 1) # initialize to start token
topk_obj = []
for t in range(max_tgt_sz):
dec_output, dec_hidden, aw = self.decoder(
dec_input,
dec_hidden,
enc_output,
)
## π{prob} = Σ{log(prob)} -> to prevent diminishing
# dec_output: (1, output_dim)
dec_output = nn.functional.log_softmax(dec_output, dim=1)
# pred_topk.values & pred_topk.indices: (1, beam_width)
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
topk_obj.append(pred_topk)
# dec_input: (1, 1)
dec_input = pred_topk.indices[0][0].view(1, 1)
if torch.eq(dec_input, end_tok):
break
top_pred_list = _beam_search_topk(topk_obj, start_tok, beam_width)
pred_tnsr_list = [t[1] for t in top_pred_list]
return pred_tnsr_list
class GlyphStrawboss:
def __init__(self, glyphs="en"):
"""list of letters in a language in unicode
lang: List with unicodes
"""
if glyphs == "en":
# Smallcase alone
self.glyphs = [chr(alpha) for alpha in range(97, 123)] + ["é", "è", "á"]
else:
self.dossier = json.load(open(glyphs, encoding="utf-8"))
self.numsym_map = self.dossier["numsym_map"]
self.glyphs = self.dossier["glyphs"]
self.indoarab_num = [chr(alpha) for alpha in range(48, 58)]
self.char2idx = {}
self.idx2char = {}
self._create_index()
def _create_index(self):
self.char2idx["_"] = 0 # pad
self.char2idx["$"] = 1 # start
self.char2idx["#"] = 2 # end
self.char2idx["*"] = 3 # Mask
self.char2idx["'"] = 4 # apostrophe U+0027
self.char2idx["%"] = 5 # unused
self.char2idx["!"] = 6 # unused
self.char2idx["?"] = 7
self.char2idx[":"] = 8
self.char2idx[" "] = 9
self.char2idx["-"] = 10
self.char2idx[","] = 11
self.char2idx["."] = 12
self.char2idx["("] = 13
self.char2idx[")"] = 14
self.char2idx["/"] = 15
self.char2idx["^"] = 16
for idx, char in enumerate(self.indoarab_num):
self.char2idx[char] = idx + 17
# letter to index mapping
for idx, char in enumerate(self.glyphs):
self.char2idx[char] = idx + 27 # +20 token initially
# index to letter mapping
for char, idx in self.char2idx.items():
self.idx2char[idx] = char
def size(self):
return len(self.char2idx)
def word2xlitvec(self, word):
"""Converts given string of gyphs(word) to vector(numpy)
Also adds tokens for start and end
"""
try:
vec = [self.char2idx["$"]] # start token
for i in list(word):
vec.append(self.char2idx[i])
vec.append(self.char2idx["#"]) # end token
vec = np.asarray(vec, dtype=np.int64)
return vec
except Exception as error:
print("Error In word:", word, "Error Char not in Token:", error)
sys.exit()
def xlitvec2word(self, vector):
"""Converts vector(numpy) to string of glyphs(word)"""
char_list = []
for i in vector:
char_list.append(self.idx2char[i])
word = "".join(char_list).replace("$", "").replace("#", "") # remove tokens
word = word.replace("_", "").replace("*", "") # remove tokens
return word
class XlitPiston:
"""
For handling prediction & post-processing of transliteration for a single language
Class dependency: Seq2Seq, GlyphStrawboss
Global Variables: F_DIR
"""
def __init__(
self, weight_path, tglyph_cfg_file, iglyph_cfg_file="en", device="cpu"
):
self.device = device
self.in_glyph_obj = GlyphStrawboss(iglyph_cfg_file)
self.tgt_glyph_obj = GlyphStrawboss(glyphs=tglyph_cfg_file)
self._numsym_set = set(
json.load(open(tglyph_cfg_file, encoding="utf-8"))["numsym_map"].keys()
)
self._inchar_set = set("abcdefghijklmnopqrstuvwxyzéèá")
self._natscr_set = set().union(
self.tgt_glyph_obj.glyphs, sum(self.tgt_glyph_obj.numsym_map.values(), [])
)
## Model Config Static TODO: add defining in json support
input_dim = self.in_glyph_obj.size()
output_dim = self.tgt_glyph_obj.size()
enc_emb_dim = 300
dec_emb_dim = 300
enc_hidden_dim = 512
dec_hidden_dim = 512
rnn_type = "lstm"
enc2dec_hid = True
attention = True
enc_layers = 1
dec_layers = 2
m_dropout = 0
enc_bidirect = True
enc_outstate_dim = enc_hidden_dim * (2 if enc_bidirect else 1)
enc = Encoder(
input_dim=input_dim,
embed_dim=enc_emb_dim,
hidden_dim=enc_hidden_dim,
rnn_type=rnn_type,
layers=enc_layers,
dropout=m_dropout,
device=self.device,
bidirectional=enc_bidirect,
)
dec = Decoder(
output_dim=output_dim,
embed_dim=dec_emb_dim,
hidden_dim=dec_hidden_dim,
rnn_type=rnn_type,
layers=dec_layers,
dropout=m_dropout,
use_attention=attention,
enc_outstate_dim=enc_outstate_dim,
device=self.device,
)
self.model = Seq2Seq(enc, dec, pass_enc2dec_hid=enc2dec_hid, device=self.device)
self.model = self.model.to(self.device)
weights = torch.load(weight_path, map_location=torch.device(self.device))
self.model.load_state_dict(weights)
self.model.eval()
def character_model(self, word, beam_width=1):
in_vec = torch.from_numpy(self.in_glyph_obj.word2xlitvec(word)).to(self.device)
## change to active or passive beam
p_out_list = self.model.active_beam_inference(in_vec, beam_width=beam_width)
result = [
self.tgt_glyph_obj.xlitvec2word(out.cpu().numpy()) for out in p_out_list
]
# List type
return result
def numsym_model(self, seg):
"""tgt_glyph_obj.numsym_map[x] returns a list object"""
if len(seg) == 1:
return [seg] + self.tgt_glyph_obj.numsym_map[seg]
a = [self.tgt_glyph_obj.numsym_map[n][0] for n in seg]
return [seg] + ["".join(a)]
def _word_segementer(self, sequence):
sequence = sequence.lower()
accepted = set().union(self._numsym_set, self._inchar_set, self._natscr_set)
# sequence = ''.join([i for i in sequence if i in accepted])
segment = []
idx = 0
seq_ = list(sequence)
while len(seq_):
# for Number-Symbol
temp = ""
while len(seq_) and seq_[0] in self._numsym_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
# for Target Chars
temp = ""
while len(seq_) and seq_[0] in self._natscr_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
# for Input-Roman Chars
temp = ""
while len(seq_) and seq_[0] in self._inchar_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
temp = ""
while len(seq_) and seq_[0] not in accepted:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
return segment
def inferencer(self, sequence, beam_width=10):
seg = self._word_segementer(sequence[:120])
lit_seg = []
p = 0
while p < len(seg):
if seg[p][0] in self._natscr_set:
lit_seg.append([seg[p]])
p += 1
elif seg[p][0] in self._inchar_set:
lit_seg.append(self.character_model(seg[p], beam_width=beam_width))
p += 1
elif seg[p][0] in self._numsym_set: # num & punc
lit_seg.append(self.numsym_model(seg[p]))
p += 1
else:
lit_seg.append([seg[p]])
p += 1
## IF segment less/equal to 2 then return combinotorial,
## ELSE only return top1 of each result concatenated
if len(lit_seg) == 1:
final_result = lit_seg[0]
elif len(lit_seg) == 2:
final_result = [""]
for seg in lit_seg:
new_result = []
for s in seg:
for f in final_result:
new_result.append(f + s)
final_result = new_result
else:
new_result = []
for seg in lit_seg:
new_result.append(seg[0])
final_result = ["".join(new_result)]
return final_result
class XlitEngine:
"""
For Managing the top level tasks and applications of transliteration
Global Variables: F_DIR
"""
def __init__(self, lang2use="hi", config_path="models/default_lineup.json"):
lineup = json.load(open(os.path.join(F_DIR, config_path), encoding="utf-8"))
models_path = os.path.join(F_DIR, "models")
self.lang_config = {}
if lang2use in lineup:
self.lang_config[lang2use] = lineup[lang2use]
else:
raise Exception(
"XlitError: The entered Langauge code not found. Available are {}".format(
lineup.keys()
)
)
self.langs = {}
self.lang_model = {}
for la in self.lang_config:
try:
print("Loading {}...".format(la))
self.lang_model[la] = XlitPiston(
weight_path=os.path.join(
models_path, self.lang_config[la]["weight"]
),
tglyph_cfg_file=os.path.join(
models_path, self.lang_config[la]["script"]
),
iglyph_cfg_file="en",
)
self.langs[la] = self.lang_config[la]["name"]
except Exception as error:
print("XlitError: Failure in loading {} \n".format(la), error)
print(XlitError.loading_err.value)
def translit_word(self, eng_word, lang_code="hi", topk=7, beam_width=10):
if eng_word == "":
return []
if lang_code in self.langs:
try:
res_list = self.lang_model[lang_code].inferencer(
eng_word, beam_width=beam_width
)
return res_list[:topk]
except Exception as error:
print("XlitError:", traceback.format_exc())
print(XlitError.internal_err.value)
return XlitError.internal_err
else:
print("XlitError: Unknown Langauge requested", lang_code)
print(XlitError.lang_err.value)
return XlitError.lang_err
def translit_sentence(self, eng_sentence, lang_code="hi", beam_width=10):
if eng_sentence == "":
return []
if lang_code in self.langs:
try:
out_str = ""
for word in eng_sentence.split():
res_ = self.lang_model[lang_code].inferencer(
word, beam_width=beam_width
)
out_str = out_str + res_[0] + " "
return out_str[:-1]
except Exception as error:
print("XlitError:", traceback.format_exc())
print(XlitError.internal_err.value)
return XlitError.internal_err
else:
print("XlitError: Unknown Langauge requested", lang_code)
print(XlitError.lang_err.value)
return XlitError.lang_err
if __name__ == "__main__":
engine = XlitEngine()
y = engine.translit_sentence("Hello World !")
print(y)