anuragch07 commited on
Commit
6e65a75
·
verified ·
1 Parent(s): f0dcd42

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +65 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ from parler_tts import ParlerTTSForConditionalGeneration
4
+ from transformers import AutoTokenizer
5
+ import soundfile as sf
6
+ import gradio as gr
7
+ import os
8
+
9
+ # Set device (GPU if available, else CPU)
10
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
+
12
+ # Load model and tokenizer from Hugging Face Hub
13
+ # These will be downloaded automatically by the Space when it builds
14
+ # The model will be loaded to the GPU if available in the Space's runtime
15
+ model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-tiny-v1").to(device)
16
+ tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-tiny-v1")
17
+
18
+ def predict_tts(text, voice_description):
19
+ if not text:
20
+ return None, "Please enter some text."
21
+ if not voice_description:
22
+ return None, "Please provide a voice description."
23
+
24
+ try:
25
+ input_ids = tokenizer(voice_description, return_tensors="pt").input_ids.to(device)
26
+ prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device)
27
+
28
+ with torch.no_grad(): # Disable gradient calculation for inference to save memory and speed
29
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
30
+
31
+ audio_arr = generation.cpu().numpy().squeeze()
32
+ sampling_rate = model.config.sampling_rate
33
+
34
+ # Gradio's Audio output component expects a filepath to an audio file
35
+ output_path = "output_audio.wav"
36
+ sf.write(output_path, audio_arr, sampling_rate)
37
+
38
+ return output_path, "Speech generated successfully!"
39
+ except Exception as e:
40
+ return None, f"An error occurred: {str(e)}"
41
+
42
+ # Gradio Interface definition for the Space
43
+ iface = gr.Interface(
44
+ fn=predict_tts,
45
+ inputs=[
46
+ gr.Textbox(lines=5, label="Text to Convert", placeholder="Enter your text here..."),
47
+ gr.Textbox(lines=3, label="Voice Description", placeholder="e.g., A female speaker with a calm and clear speech, very high quality audio."),
48
+ ],
49
+ outputs=[
50
+ gr.Audio(label="Generated Speech", type="filepath"),
51
+ gr.Textbox(label="Status")
52
+ ],
53
+ title="Parler-TTS Tiny: Natural Language Guided Text-to-Speech",
54
+ description="Enter text and describe the voice you want (gender, tone, speed, quality) to generate speech using the tiny Parler-TTS model.",
55
+ examples=[
56
+ ["Hello, my name is Parler TTS. How can I help you today?", "A friendly female voice speaking clearly."],
57
+ ["The quick brown fox jumps over the lazy dog.", "A deep male voice, speaking slowly and thoughtfully."],
58
+ ["We're excited to announce our new product!", "An enthusiastic female voice with high pitch."],
59
+ ],
60
+ allow_flagging="never" # This prevents users from flagging your outputs for feedback
61
+ )
62
+
63
+ # This standard Gradio line tells the Space to launch the interface
64
+ if __name__ == "__main__":
65
+ iface.launch()