Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,19 +19,16 @@ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
|
| 19 |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
| 20 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 21 |
|
| 22 |
-
# Max tokens allowed by model
|
| 23 |
-
MAX_TOKENS = 600
|
| 24 |
-
|
| 25 |
# Map integer to speaker embedding URL
|
| 26 |
SPEAKER_EMBEDDINGS = {
|
| 27 |
-
0: "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin",
|
| 28 |
-
1: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_slt_arctic-wav-arctic_a0001.bin",
|
| 29 |
-
2: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_clb_arctic-wav-arctic_a0001.bin",
|
| 30 |
-
3: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_bdl_arctic-wav-arctic_a0003.bin",
|
| 31 |
-
4: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_rms_arctic-wav-arctic_a0003.bin",
|
| 32 |
-
5: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_jmk_arctic-wav-arctic_a0002.bin",
|
| 33 |
-
6: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_awb_arctic-wav-arctic_b0002.bin",
|
| 34 |
-
7: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_ksp_arctic-wav-arctic_a0007.bin",
|
| 35 |
}
|
| 36 |
|
| 37 |
|
|
@@ -42,7 +39,7 @@ def load_speaker_embedding(url: str) -> torch.Tensor:
|
|
| 42 |
return embedding.unsqueeze(0)
|
| 43 |
|
| 44 |
|
| 45 |
-
def
|
| 46 |
smoothed = np.copy(audio)
|
| 47 |
half = window_size // 2
|
| 48 |
for i in range(len(audio)):
|
|
@@ -57,26 +54,6 @@ def apply_fade_out(audio: np.ndarray, fade_samples: int = 256) -> np.ndarray:
|
|
| 57 |
audio[-fade_samples:] *= fade
|
| 58 |
return audio
|
| 59 |
|
| 60 |
-
|
| 61 |
-
def chunk_text(text: str, processor, max_tokens: int = MAX_TOKENS):
|
| 62 |
-
words = text.split()
|
| 63 |
-
chunks = []
|
| 64 |
-
current_chunk = []
|
| 65 |
-
|
| 66 |
-
for word in words:
|
| 67 |
-
current_chunk.append(word)
|
| 68 |
-
tokens = processor(" ".join(current_chunk), return_tensors="pt")["input_ids"]
|
| 69 |
-
if tokens.size(1) > max_tokens:
|
| 70 |
-
current_chunk.pop()
|
| 71 |
-
chunks.append(" ".join(current_chunk))
|
| 72 |
-
current_chunk = [word]
|
| 73 |
-
|
| 74 |
-
if current_chunk:
|
| 75 |
-
chunks.append(" ".join(current_chunk))
|
| 76 |
-
|
| 77 |
-
return chunks
|
| 78 |
-
|
| 79 |
-
|
| 80 |
@app.get("/speak")
|
| 81 |
def speak(
|
| 82 |
text: str = Query(..., description="Text to convert to speech"),
|
|
@@ -85,17 +62,9 @@ def speak(
|
|
| 85 |
embedding_url = SPEAKER_EMBEDDINGS[speaker]
|
| 86 |
speaker_embedding = load_speaker_embedding(embedding_url)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
for chunk in chunks:
|
| 92 |
-
inputs = processor(text=chunk, return_tensors="pt")
|
| 93 |
-
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
| 94 |
-
audio_chunk = speech.numpy().astype(np.float32)
|
| 95 |
-
audio_list.append(audio_chunk)
|
| 96 |
-
|
| 97 |
-
# Concatenate all chunks
|
| 98 |
-
audio = np.concatenate(audio_list)
|
| 99 |
|
| 100 |
# --- Normalize ---
|
| 101 |
peak = np.max(np.abs(audio))
|
|
@@ -103,10 +72,10 @@ def speak(
|
|
| 103 |
audio = (audio / peak) * NORMALIZATION_LEVEL
|
| 104 |
|
| 105 |
# --- Smooth audio ---
|
| 106 |
-
audio =
|
| 107 |
|
| 108 |
-
# --- Fade out ---
|
| 109 |
-
fade_samples = min(512, len(audio)//10)
|
| 110 |
audio = apply_fade_out(audio, fade_samples)
|
| 111 |
|
| 112 |
# --- Bit depth ---
|
|
|
|
| 19 |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
| 20 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
# Map integer to speaker embedding URL
|
| 23 |
SPEAKER_EMBEDDINGS = {
|
| 24 |
+
0: "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin", # Normal
|
| 25 |
+
1: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_slt_arctic-wav-arctic_a0001.bin", # US female 1
|
| 26 |
+
2: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_clb_arctic-wav-arctic_a0001.bin", # US female 2
|
| 27 |
+
3: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_bdl_arctic-wav-arctic_a0003.bin", # US male 1
|
| 28 |
+
4: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_rms_arctic-wav-arctic_a0003.bin", # US male 2
|
| 29 |
+
5: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_jmk_arctic-wav-arctic_a0002.bin", # Canadian male
|
| 30 |
+
6: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_awb_arctic-wav-arctic_b0002.bin", # Scottish male
|
| 31 |
+
7: "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_ksp_arctic-wav-arctic_a0007.bin", # Indian male
|
| 32 |
}
|
| 33 |
|
| 34 |
|
|
|
|
| 39 |
return embedding.unsqueeze(0)
|
| 40 |
|
| 41 |
|
| 42 |
+
def smooth_audio_nodejs(audio: np.ndarray, window_size: int) -> np.ndarray:
|
| 43 |
smoothed = np.copy(audio)
|
| 44 |
half = window_size // 2
|
| 45 |
for i in range(len(audio)):
|
|
|
|
| 54 |
audio[-fade_samples:] *= fade
|
| 55 |
return audio
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
@app.get("/speak")
|
| 58 |
def speak(
|
| 59 |
text: str = Query(..., description="Text to convert to speech"),
|
|
|
|
| 62 |
embedding_url = SPEAKER_EMBEDDINGS[speaker]
|
| 63 |
speaker_embedding = load_speaker_embedding(embedding_url)
|
| 64 |
|
| 65 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 66 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
| 67 |
+
audio = speech.numpy().astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# --- Normalize ---
|
| 70 |
peak = np.max(np.abs(audio))
|
|
|
|
| 72 |
audio = (audio / peak) * NORMALIZATION_LEVEL
|
| 73 |
|
| 74 |
# --- Smooth audio ---
|
| 75 |
+
audio = smooth_audio_nodejs(audio, SMOOTHING_WINDOW * 2) # Slightly larger window
|
| 76 |
|
| 77 |
+
# --- Fade out to remove clicks at the end ---
|
| 78 |
+
fade_samples = min(512, len(audio)//10) # ~30ms at 16kHz
|
| 79 |
audio = apply_fade_out(audio, fade_samples)
|
| 80 |
|
| 81 |
# --- Bit depth ---
|