Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
@app.get("/speak")
|
| 4 |
def speak(text: str = Query(..., description="Text to convert to speech")):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# Prepare input
|
| 6 |
inputs = processor(text=text, return_tensors="pt")
|
| 7 |
|
|
@@ -12,17 +61,12 @@ def speak(text: str = Query(..., description="Text to convert to speech")):
|
|
| 12 |
# --- Normalize ---
|
| 13 |
peak = np.max(np.abs(audio))
|
| 14 |
if peak > 0:
|
| 15 |
-
audio = (audio / peak) * 0.1 #
|
| 16 |
|
| 17 |
-
# --- Smooth
|
| 18 |
-
|
| 19 |
-
if window_size > 1:
|
| 20 |
-
cumsum = np.cumsum(np.insert(audio, 0, 0))
|
| 21 |
-
audio = (cumsum[window_size:] - cumsum[:-window_size]) / window_size
|
| 22 |
-
# pad to original length
|
| 23 |
-
audio = np.pad(audio, (window_size//2, window_size-1-window_size//2), mode='edge')
|
| 24 |
|
| 25 |
-
# Write WAV as 32-bit float
|
| 26 |
buf = io.BytesIO()
|
| 27 |
sf.write(buf, audio, samplerate=16000, format="WAV", subtype="FLOAT")
|
| 28 |
buf.seek(0)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Query
|
| 2 |
+
from fastapi.responses import StreamingResponse
|
| 3 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 4 |
+
import torch
|
| 5 |
+
import io
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
import requests
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
+
app = FastAPI(title="SpeechT5 TTS API")
|
| 11 |
+
|
| 12 |
+
# Load models once at startup
|
| 13 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 14 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
| 15 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Function to load a speaker embedding from a URL
|
| 19 |
+
def load_speaker_embedding(url: str) -> torch.Tensor:
|
| 20 |
+
response = requests.get(url)
|
| 21 |
+
response.raise_for_status()
|
| 22 |
+
# Load the .bin file as a float32 tensor
|
| 23 |
+
embedding = torch.frombuffer(response.content, dtype=torch.float32)
|
| 24 |
+
return embedding.unsqueeze(0) # Add batch dimension
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Example: load US female 1
|
| 28 |
+
speaker_embeddings = load_speaker_embedding(
|
| 29 |
+
"https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_slt_arctic-wav-arctic_a0001.bin"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def smooth_audio(audio: np.ndarray, window_size: int = 3) -> np.ndarray:
|
| 34 |
+
"""
|
| 35 |
+
Simple moving average smoothing.
|
| 36 |
+
"""
|
| 37 |
+
if window_size < 2:
|
| 38 |
+
return audio
|
| 39 |
+
cumsum = np.cumsum(np.insert(audio, 0, 0))
|
| 40 |
+
smoothed = (cumsum[window_size:] - cumsum[:-window_size]) / window_size
|
| 41 |
+
# pad to original length
|
| 42 |
+
pad_left = window_size // 2
|
| 43 |
+
pad_right = window_size - 1 - pad_left
|
| 44 |
+
smoothed = np.pad(smoothed, (pad_left, pad_right), mode='edge')
|
| 45 |
+
return smoothed
|
| 46 |
+
|
| 47 |
+
|
| 48 |
@app.get("/speak")
|
| 49 |
def speak(text: str = Query(..., description="Text to convert to speech")):
|
| 50 |
+
"""
|
| 51 |
+
Convert text to speech using SpeechT5 + HiFi-GAN.
|
| 52 |
+
Returns a WAV audio stream.
|
| 53 |
+
"""
|
| 54 |
# Prepare input
|
| 55 |
inputs = processor(text=text, return_tensors="pt")
|
| 56 |
|
|
|
|
| 61 |
# --- Normalize ---
|
| 62 |
peak = np.max(np.abs(audio))
|
| 63 |
if peak > 0:
|
| 64 |
+
audio = (audio / peak) * 0.1 # Adjustable normalization level
|
| 65 |
|
| 66 |
+
# --- Smooth ---
|
| 67 |
+
audio = smooth_audio(audio, window_size=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
# --- Write WAV as 32-bit float ---
|
| 70 |
buf = io.BytesIO()
|
| 71 |
sf.write(buf, audio, samplerate=16000, format="WAV", subtype="FLOAT")
|
| 72 |
buf.seek(0)
|