stashface / app.py
anu1097's picture
chore: further changes
968fa18
import os
import json
import math
import pyzipper
import numpy as np
import gradio as gr
import numpy as np
import opennsfw2 as n2
import base64
from annoy import AnnoyIndex
from deepface.commons import functions
from deepface.basemodels import Facenet512
from fastcore.all import *
from fastai.vision.all import *
os.environ["DEEPFACE_HOME"] = "."
yahooNsfwModel = n2.make_open_nsfw_model()
# load the face model
model = Facenet512.loadModel()
input_shape_x, input_shape_y = functions.find_input_shape(model)
index = AnnoyIndex(512, "euclidean")
index.load(f"face.db")
ANNOY_INDEX = json.load(open(f"face.json"))
with pyzipper.AESZipFile("persons.zip") as zf:
password = os.getenv("VISAGE_KEY", "").encode("ascii")
zf.setpassword(password)
PERFORMER_DB = json.loads(zf.read("performers.json"))
## Prediction functions
def image_search_performer(image, threshold=20.0, results=3):
"""Search for a performer in an image
Returns a list of performers with at least following keys:
- id: the performer's id
- distance: the distance between the face in the image and the performer's face
- confidence: a confidence score between 0 and 100
- hits: the number of times the performer was found in our database
"""
image_array = np.array(image)
try :
img = functions.preprocess_face(
img=image_array,
target_size=(input_shape_x, input_shape_y),
detector_backend="retinaface",
align=True,
)
img = functions.normalize_input(img, normalization="Facenet2018")
face = model.predict(img)[0]
return search_performer(face, threshold, results)
except Exception as e:
print(e, "for img", image)
return []
def search_performer(vector, threshold=20.0, results=3):
threshold = threshold or 20.0
results = results or 3
ids, distances = index.get_nns_by_vector(
vector, 50, search_k=10000, include_distances=True
)
persons = {}
for p, distance in zip(ids, distances):
id = ANNOY_INDEX[p]
if id in persons:
persons[id]["hits"] += 1
persons[id]["distance"] -= 0.5
persons[id]["confidence"] = normalize_confidence_from_distance(
persons[id]["distance"], threshold
)
continue
persons[id] = {
"id": id,
"distance": round(distance, 2),
"confidence": normalize_confidence_from_distance(distance, threshold),
"hits": 1,
}
if id in PERFORMER_DB:
persons[id].update(PERFORMER_DB.get(id))
persons = sorted(persons.values(), key=lambda x: x["distance"])
persons = [p for p in persons if p["distance"] < threshold]
return persons[:results]
def normalize_confidence_from_distance(distance, threshold=20.0):
"""Normalize confidence to 0-100 scale"""
confidence = face_distance_to_conf(distance, threshold)
return int(((confidence - 0.0) / (1.0 - 0.0)) * (100.0 - 0.0) + 0.0)
def face_distance_to_conf(face_distance, face_match_threshold=20.0):
"""Using a face distance, calculate a similarity confidence value"""
if face_distance > face_match_threshold:
# The face is far away, so give it a low confidence
range = 1.0 - face_match_threshold
linear_val = (1.0 - face_distance) / (range * 2.0)
return linear_val
else:
# The face is close, so give it a high confidence
range = face_match_threshold
linear_val = 1.0 - (face_distance / (range * 2.0))
# But adjust this value by a curve so that we don't get a linear
# transition from close to far. We want it to be more confident
# the closer it is.
return linear_val + ((1.0 - linear_val) * math.pow((linear_val - 0.5) * 2, 0.2))
def predict(image, vtt):
vtt = base64.b64decode(vtt.replace("data:text/vtt;base64,", ""))
sprite = PILImage.create(image)
pre_process_data = []
for left, top, right, bottom in getVTToffsets(vtt):
cut_frame = sprite.crop((left, top, left + right, top + bottom))
image = n2.preprocess_image(cut_frame, n2.Preprocessing.YAHOO)
pre_process_data.append(
(np.expand_dims(image, axis=0), cut_frame, (left, top, right, bottom))
)
offsets = []
images = []
tensors = [i[0] for i in pre_process_data]
predictions = yahooNsfwModel.predict(np.vstack(tensors))
for i, prediction in enumerate(predictions):
if prediction[0] < 0.5:
images.append(PILImage.create(np.asarray(pre_process_data[i][1])))
offsets.append(pre_process_data[i][2])
persons = {}
for image in images:
personList = image_search_performer(image)
for person in personList:
person_id = person["id"]
if person_id not in persons:
persons[person_id] = person
else:
existing_person = persons[person_id]
existing_person["hits"] += person["hits"]
if person["distance"] < existing_person["distance"]:
existing_person["distance"] = person["distance"]
if person["confidence"] > existing_person["confidence"]:
existing_person["confidence"] = person["confidence"]
return persons
def getVTToffsets(vtt):
left = top = right = bottom = None
for line in vtt.decode("utf-8").split("\n"):
line = line.strip()
if "xywh=" in line:
left, top, right, bottom = line.split("xywh=")[-1].split(",")
left, top, right, bottom = (
int(left),
int(top),
int(right),
int(bottom),
)
else:
continue
if not left:
continue
yield left, top, right, bottom
image_search = gr.Interface(
fn=image_search_performer,
inputs=[
gr.components.Image(),
gr.components.Slider(label="threshold", minimum=0.0, maximum=30.0, value=20.0),
gr.components.Slider(label="results", minimum=0, maximum=50, value=3, step=1),
],
outputs=gr.outputs.JSON(label=""),
title="Who is in the photo?",
description="Upload an image of a person and we'll tell you who it is.",
)
sprite_search = gr.Interface(
fn=predict,
inputs=[
gr.Image(),
gr.Textbox(label="VTT file"),
],
outputs=gr.JSON(label=""),
).launch(enable_queue=True, server_name="0.0.0.0")
gr.TabbedInterface([image_search, sprite_search]).launch(
enable_queue=True, server_name="0.0.0.0"
)