Spaces:
Runtime error
Runtime error
import gc | |
from queue import Queue | |
from threading import Thread | |
import torch | |
import transformers | |
import modules.shared as shared | |
# Copied from https://github.com/PygmalionAI/gradio-ui/ | |
class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria): | |
def __init__(self, sentinel_token_ids: torch.LongTensor, | |
starting_idx: int): | |
transformers.StoppingCriteria.__init__(self) | |
self.sentinel_token_ids = sentinel_token_ids | |
self.starting_idx = starting_idx | |
def __call__(self, input_ids: torch.LongTensor, | |
_scores: torch.FloatTensor) -> bool: | |
for sample in input_ids: | |
trimmed_sample = sample[self.starting_idx:] | |
# Can't unfold, output is still too tiny. Skip. | |
if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]: | |
continue | |
for window in trimmed_sample.unfold( | |
0, self.sentinel_token_ids.shape[-1], 1): | |
if torch.all(torch.eq(self.sentinel_token_ids, window)): | |
return True | |
return False | |
class Stream(transformers.StoppingCriteria): | |
def __init__(self, callback_func=None): | |
self.callback_func = callback_func | |
def __call__(self, input_ids, scores) -> bool: | |
if self.callback_func is not None: | |
self.callback_func(input_ids[0]) | |
return False | |
class Iteratorize: | |
""" | |
Transforms a function that takes a callback | |
into a lazy iterator (generator). | |
""" | |
def __init__(self, func, kwargs={}, callback=None): | |
self.mfunc=func | |
self.c_callback=callback | |
self.q = Queue() | |
self.sentinel = object() | |
self.kwargs = kwargs | |
self.stop_now = False | |
def _callback(val): | |
if self.stop_now: | |
raise ValueError | |
self.q.put(val) | |
def gentask(): | |
try: | |
ret = self.mfunc(callback=_callback, **self.kwargs) | |
except ValueError: | |
pass | |
clear_torch_cache() | |
self.q.put(self.sentinel) | |
if self.c_callback: | |
self.c_callback(ret) | |
self.thread = Thread(target=gentask) | |
self.thread.start() | |
def __iter__(self): | |
return self | |
def __next__(self): | |
obj = self.q.get(True,None) | |
if obj is self.sentinel: | |
raise StopIteration | |
else: | |
return obj | |
def __del__(self): | |
clear_torch_cache() | |
def __enter__(self): | |
return self | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
self.stop_now = True | |
clear_torch_cache() | |
def clear_torch_cache(): | |
gc.collect() | |
if not shared.args.cpu: | |
torch.cuda.empty_cache() | |