Spaces:
Runtime error
Runtime error
from pathlib import Path | |
import gradio as gr | |
import torch | |
from modules import shared | |
with open(Path(__file__).resolve().parent / '../css/main.css', 'r') as f: | |
css = f.read() | |
with open(Path(__file__).resolve().parent / '../css/chat.css', 'r') as f: | |
chat_css = f.read() | |
with open(Path(__file__).resolve().parent / '../css/main.js', 'r') as f: | |
main_js = f.read() | |
with open(Path(__file__).resolve().parent / '../css/chat.js', 'r') as f: | |
chat_js = f.read() | |
refresh_symbol = '\U0001f504' # π | |
theme = gr.themes.Default( | |
font=['Helvetica', 'ui-sans-serif', 'system-ui', 'sans-serif'], | |
font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], | |
).set( | |
border_color_primary='#c5c5d2', | |
button_large_padding='6px 12px', | |
body_text_color_subdued='#484848', | |
background_fill_secondary='#eaeaea' | |
) | |
def list_model_elements(): | |
elements = ['cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers'] | |
for i in range(torch.cuda.device_count()): | |
elements.append(f'gpu_memory_{i}') | |
return elements | |
def list_interface_input_elements(chat=False): | |
elements = ['max_new_tokens', 'seed', 'temperature', 'top_p', 'top_k', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'add_bos_token', 'ban_eos_token', 'truncation_length', 'custom_stopping_strings', 'skip_special_tokens', 'preset_menu', 'stream'] | |
if chat: | |
elements += ['name1', 'name2', 'greeting', 'context', 'chat_prompt_size', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command'] | |
elements += list_model_elements() | |
return elements | |
def gather_interface_values(*args): | |
output = {} | |
for i, element in enumerate(shared.input_elements): | |
output[element] = args[i] | |
shared.persistent_interface_state = output | |
return output | |
def apply_interface_values(state, use_persistent=False): | |
if use_persistent: | |
state = shared.persistent_interface_state | |
elements = list_interface_input_elements(chat=shared.is_chat()) | |
if len(state) == 0: | |
return [gr.update() for k in elements] # Dummy, do nothing | |
else: | |
return [state[k] if k in state else gr.update() for k in elements] | |
class ToolButton(gr.Button, gr.components.FormComponent): | |
"""Small button with single emoji as text, fits inside gradio forms""" | |
def __init__(self, **kwargs): | |
super().__init__(variant="tool", **kwargs) | |
def get_block_name(self): | |
return "button" | |
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): | |
def refresh(): | |
refresh_method() | |
args = refreshed_args() if callable(refreshed_args) else refreshed_args | |
for k, v in args.items(): | |
setattr(refresh_component, k, v) | |
return gr.update(**(args or {})) | |
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id) | |
refresh_button.click( | |
fn=refresh, | |
inputs=[], | |
outputs=[refresh_component] | |
) | |
return refresh_button | |