Spaces:
Runtime error
Runtime error
''' | |
Based on | |
https://github.com/abetlen/llama-cpp-python | |
Documentation: | |
https://abetlen.github.io/llama-cpp-python/ | |
''' | |
import logging | |
import re | |
from llama_cpp import Llama, LlamaCache | |
from modules import shared | |
from modules.callbacks import Iteratorize | |
class LlamaCppModel: | |
def __init__(self): | |
self.initialized = False | |
def __del__(self): | |
self.model.__del__() | |
def from_pretrained(self, path): | |
result = self() | |
cache_capacity = 0 | |
if shared.args.cache_capacity is not None: | |
if 'GiB' in shared.args.cache_capacity: | |
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 * 1000 | |
elif 'MiB' in shared.args.cache_capacity: | |
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 | |
else: | |
cache_capacity = int(shared.args.cache_capacity) | |
logging.info("Cache capacity is " + str(cache_capacity) + " bytes") | |
params = { | |
'model_path': str(path), | |
'n_ctx': 2048, | |
'seed': 0, | |
'n_threads': shared.args.threads or None, | |
'n_batch': shared.args.n_batch, | |
'use_mmap': not shared.args.no_mmap, | |
'use_mlock': shared.args.mlock, | |
'n_gpu_layers': shared.args.n_gpu_layers | |
} | |
self.model = Llama(**params) | |
if cache_capacity > 0: | |
self.model.set_cache(LlamaCache(capacity_bytes=cache_capacity)) | |
# This is ugly, but the model and the tokenizer are the same object in this library. | |
return result, result | |
def encode(self, string): | |
if type(string) is str: | |
string = string.encode() | |
return self.model.tokenize(string) | |
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None): | |
context = context if type(context) is str else context.decode() | |
completion_chunks = self.model.create_completion( | |
prompt=context, | |
max_tokens=token_count, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repeat_penalty=repetition_penalty, | |
stream=True | |
) | |
output = "" | |
for completion_chunk in completion_chunks: | |
text = completion_chunk['choices'][0]['text'] | |
output += text | |
if callback: | |
callback(text) | |
return output | |
def generate_with_streaming(self, **kwargs): | |
with Iteratorize(self.generate, kwargs, callback=None) as generator: | |
reply = '' | |
for token in generator: | |
reply += token | |
yield reply | |