Spaces:
Runtime error
Runtime error
''' | |
Downloads models from Hugging Face to models/model-name. | |
Example: | |
python download-model.py facebook/opt-1.3b | |
''' | |
import argparse | |
import base64 | |
import datetime | |
import hashlib | |
import json | |
import re | |
import sys | |
from pathlib import Path | |
import requests | |
import tqdm | |
from tqdm.contrib.concurrent import thread_map | |
def select_model_from_default_options(): | |
models = { | |
"OPT 6.7B": ("facebook", "opt-6.7b", "main"), | |
"OPT 2.7B": ("facebook", "opt-2.7b", "main"), | |
"OPT 1.3B": ("facebook", "opt-1.3b", "main"), | |
"OPT 350M": ("facebook", "opt-350m", "main"), | |
"GALACTICA 6.7B": ("facebook", "galactica-6.7b", "main"), | |
"GALACTICA 1.3B": ("facebook", "galactica-1.3b", "main"), | |
"GALACTICA 125M": ("facebook", "galactica-125m", "main"), | |
"Pythia-6.9B-deduped": ("EleutherAI", "pythia-6.9b-deduped", "main"), | |
"Pythia-2.8B-deduped": ("EleutherAI", "pythia-2.8b-deduped", "main"), | |
"Pythia-1.4B-deduped": ("EleutherAI", "pythia-1.4b-deduped", "main"), | |
"Pythia-410M-deduped": ("EleutherAI", "pythia-410m-deduped", "main"), | |
} | |
choices = {} | |
print("Select the model that you want to download:\n") | |
for i, name in enumerate(models): | |
char = chr(ord('A') + i) | |
choices[char] = name | |
print(f"{char}) {name}") | |
char_hugging = chr(ord('A') + len(models)) | |
print(f"{char_hugging}) Manually specify a Hugging Face model") | |
char_exit = chr(ord('A') + len(models) + 1) | |
print(f"{char_exit}) Do not download a model") | |
print() | |
print("Input> ", end='') | |
choice = input()[0].strip().upper() | |
if choice == char_exit: | |
exit() | |
elif choice == char_hugging: | |
print("""\nType the name of your desired Hugging Face model in the format organization/name. | |
Examples: | |
facebook/opt-1.3b | |
EleutherAI/pythia-1.4b-deduped | |
""") | |
print("Input> ", end='') | |
model = input() | |
branch = "main" | |
else: | |
arr = models[choices[choice]] | |
model = f"{arr[0]}/{arr[1]}" | |
branch = arr[2] | |
return model, branch | |
def sanitize_model_and_branch_names(model, branch): | |
if model[-1] == '/': | |
model = model[:-1] | |
if branch is None: | |
branch = "main" | |
else: | |
pattern = re.compile(r"^[a-zA-Z0-9._-]+$") | |
if not pattern.match(branch): | |
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") | |
return model, branch | |
def get_download_links_from_huggingface(model, branch, text_only=False): | |
base = "https://huggingface.co" | |
page = f"/api/models/{model}/tree/{branch}" | |
cursor = b"" | |
links = [] | |
sha256 = [] | |
classifications = [] | |
has_pytorch = False | |
has_pt = False | |
has_ggml = False | |
has_safetensors = False | |
is_lora = False | |
while True: | |
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "") | |
r = requests.get(url, timeout=10) | |
r.raise_for_status() | |
content = r.content | |
dict = json.loads(content) | |
if len(dict) == 0: | |
break | |
for i in range(len(dict)): | |
fname = dict[i]['path'] | |
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')): | |
is_lora = True | |
is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname) | |
is_safetensors = re.match(".*\.safetensors", fname) | |
is_pt = re.match(".*\.pt", fname) | |
is_ggml = re.match(".*ggml.*\.bin", fname) | |
is_tokenizer = re.match("(tokenizer|ice).*\.model", fname) | |
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer | |
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)): | |
if 'lfs' in dict[i]: | |
sha256.append([fname, dict[i]['lfs']['oid']]) | |
if is_text: | |
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") | |
classifications.append('text') | |
continue | |
if not text_only: | |
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") | |
if is_safetensors: | |
has_safetensors = True | |
classifications.append('safetensors') | |
elif is_pytorch: | |
has_pytorch = True | |
classifications.append('pytorch') | |
elif is_pt: | |
has_pt = True | |
classifications.append('pt') | |
elif is_ggml: | |
has_ggml = True | |
classifications.append('ggml') | |
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' | |
cursor = base64.b64encode(cursor) | |
cursor = cursor.replace(b'=', b'%3D') | |
# If both pytorch and safetensors are available, download safetensors only | |
if (has_pytorch or has_pt) and has_safetensors: | |
for i in range(len(classifications) - 1, -1, -1): | |
if classifications[i] in ['pytorch', 'pt']: | |
links.pop(i) | |
return links, sha256, is_lora | |
def get_output_folder(model, branch, is_lora, base_folder=None): | |
if base_folder is None: | |
base_folder = 'models' if not is_lora else 'loras' | |
output_folder = f"{'_'.join(model.split('/')[-2:])}" | |
if branch != 'main': | |
output_folder += f'_{branch}' | |
output_folder = Path(base_folder) / output_folder | |
return output_folder | |
def get_single_file(url, output_folder, start_from_scratch=False): | |
filename = Path(url.rsplit('/', 1)[1]) | |
output_path = output_folder / filename | |
if output_path.exists() and not start_from_scratch: | |
# Check if the file has already been downloaded completely | |
r = requests.get(url, stream=True, timeout=10) | |
total_size = int(r.headers.get('content-length', 0)) | |
if output_path.stat().st_size >= total_size: | |
return | |
# Otherwise, resume the download from where it left off | |
headers = {'Range': f'bytes={output_path.stat().st_size}-'} | |
mode = 'ab' | |
else: | |
headers = {} | |
mode = 'wb' | |
r = requests.get(url, stream=True, headers=headers, timeout=10) | |
with open(output_path, mode) as f: | |
total_size = int(r.headers.get('content-length', 0)) | |
block_size = 1024 | |
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t: | |
for data in r.iter_content(block_size): | |
t.update(len(data)) | |
f.write(data) | |
def start_download_threads(file_list, output_folder, start_from_scratch=False, threads=1): | |
thread_map(lambda url: get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True) | |
def download_model_files(model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1): | |
# Creating the folder and writing the metadata | |
if not output_folder.exists(): | |
output_folder.mkdir() | |
with open(output_folder / 'huggingface-metadata.txt', 'w') as f: | |
f.write(f'url: https://huggingface.co/{model}\n') | |
f.write(f'branch: {branch}\n') | |
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n') | |
sha256_str = '' | |
for i in range(len(sha256)): | |
sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n' | |
if sha256_str != '': | |
f.write(f'sha256sum:\n{sha256_str}') | |
# Downloading the files | |
print(f"Downloading the model to {output_folder}") | |
start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads) | |
def check_model_files(model, branch, links, sha256, output_folder): | |
# Validate the checksums | |
validated = True | |
for i in range(len(sha256)): | |
fpath = (output_folder / sha256[i][0]) | |
if not fpath.exists(): | |
print(f"The following file is missing: {fpath}") | |
validated = False | |
continue | |
with open(output_folder / sha256[i][0], "rb") as f: | |
bytes = f.read() | |
file_hash = hashlib.sha256(bytes).hexdigest() | |
if file_hash != sha256[i][1]: | |
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}') | |
validated = False | |
else: | |
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}') | |
if validated: | |
print('[+] Validated checksums of all model files!') | |
else: | |
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('MODEL', type=str, default=None, nargs='?') | |
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') | |
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.') | |
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') | |
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.') | |
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.') | |
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.') | |
args = parser.parse_args() | |
branch = args.branch | |
model = args.MODEL | |
if model is None: | |
model, branch = select_model_from_default_options() | |
# Cleaning up the model/branch names | |
try: | |
model, branch = sanitize_model_and_branch_names(model, branch) | |
except ValueError as err_branch: | |
print(f"Error: {err_branch}") | |
sys.exit() | |
# Getting the download links from Hugging Face | |
links, sha256, is_lora = get_download_links_from_huggingface(model, branch, text_only=args.text_only) | |
# Getting the output folder | |
output_folder = get_output_folder(model, branch, is_lora, base_folder=args.output) | |
if args.check: | |
# Check previously downloaded files | |
check_model_files(model, branch, links, sha256, output_folder) | |
else: | |
# Download files | |
download_model_files(model, branch, links, sha256, output_folder, threads=args.threads) | |